Triet Le
Research Scientist
Department of Mathematics, Yale University
10 Hillhouse, New Haven, CT 06511
Phone: (203) 432-4011
Office: DL 418

Here is my Curriculum Vitae.

  • 1997-2000: B.S., Mathematics and Computer Science, UCLA.
  • 2000-2002: M.A., Mathematics, UCLA.
  • 2002-2006: Ph.D., Mathematics, UCLA.

Mathematical Research Interests:
  • Inverse problems, variational methods, computational harmonic analysis, image and data analysis.

  1. T. Le and L. Vese, Image decomposition using total variation and div(BMO), Multiscale Modeling and Simulation, SIAM Interdisciplinary Journal, vol.4, num. 2, pp. 390-423, June 2005. pdf
  2. G. Chung, T. Le, L. H. Lieu, N. Tanushev, and L. Vese, Computational methods for image restoration, image segmentation, and texture modeling, Computational Imaging IV, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6065, pp. 60650J-1 -- 60650J-15, 2006. pdf
  3. T. Le, R. Chartrand and T. Asaki, A Variational Approach to Constructing Images Corrupted by Poisson Noise, JMIV, vol. 27(3), pp. 257-263, April 2007. pdf
  4. J. Garnett, T. Le, Y. Meyer and L. Vese, Image Decompositions Using Bounded Variation and Generalized Homogeneous Besov Spaces, Applied and Computational Harmonic Analysis, no. 23, pp. 25-56, July 2007. pdf
  5. T. Le and L. Vese, Additive and multiplicative piecewise-smooth segmentation models in a functional variational approach, Interpolation Theory and Applications, Comtemporary Mathematics, vol. 445, pp. 207-224, 2007. pdf.
  6. T. Le, L. Lieu, and L. Vese, BV and the Dual of BV Image Decomposition Models and Minimization Algorithms, J. of Mathematical Imaging and Vision, vol. 23, no. 2, pp. 135-148, 2009. pdf
  7. P. Jones and T. Le, Local Scales and Multiscale Image Decompositions , Applied and Computational Harmonic Analysis. vol. 26, no. 3, pp. 371-394, 2009. pdf
  8. J. Garnett, T. Le, and L.A. Vese, Some variational problems in image processing, Centre De Recerca Matematica, Preprint num 878, October 2009. pdf
  9. A. Buades, T. Le, J.-M. Morel, and L.A. Vese, Fast cartoon and texture image filters, IEEE Trans. on Image Processing, Vol. 19, no. 8, pp 1978-1986, August 2010. pdf
  10. M. Ha-Quang, S.H. Kang, and T. Le, Image and video colorization using vector-valued reproducing kernel Hilbert spaces, J. of Math. Imaging and Vision, Vol. 37, no. 1, pp. 49-65, 2010. pdf
  11. J. Garnett, P. Jones, T. Le and L. Vese, Modeling Oscillatory Components with the Homogeneous Spaces $\dot{BMO}^{-\alpha}$ and $\dot{W}^{-\alpha,p}$, Pure and Applied Mathematics Quarterly, Vol. 7, No. 2, pp. 275-318, 2011. pdf
  12. M. Barchiesi, S.-H. Kang, T. Le, M. Morini, M. Ponsiglione, A variational model for infinite perimeter segmentations based on Lipschitz level set functions: denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul. 8 (2010), no. 5, 1715-1741. pdf
  13. T. Le and F. Memoli, Local scales on curves and surfaces, Applied and Computational Harmonic Analysis, vol. 33, pp. 401-437, 2012. pdf

  1. T. Le and L. Rogers, Detecting stable scales in images via non-smooth K-functionals, UCLA CAM Report 10-63. pdf
  2. V. Chousionis, J. Garnett, T. Le, X. Tolsa, Square functions and uniform rectifiability, arXiv:1401.3382, 2014. pdf