PRIME CONGRUENCES OF IDEMPOTENT SEMIRINGS
AND A NULLSTELLENSATZ FOR TROPICAL POLYNOMIALS

SUMMARY

- We give a new definition of prime congruences in additively idempotent semirings. These congruences have analogous properties to the prime ideals of commutative rings.
- A complete description of prime congruences is given in the polynomial and Laurent polynomial semirings over the tropical semifield \(\mathbb{R}^{\max} \) and the semifields \(\mathbb{Z}^{\max} \) and \(\mathbb{B} \).
- The minimal primes of these semirings correspond to monomial orderings, and their intersection is the congruence that identifies polynomials that have the same Newton polytope.
- The Krull dimension of the (Laurent) polynomial semiring in \(n \) variables over \(K \) (where \(K \) one the three studied semifields above) is equal to \(\dim(K) + n \).
- The radical of every finitely generated congruence in the studied cases is the intersection of prime congruences with quotients of dimension 1.
- An improvement of a result by A. Bertram and R. Easton is proven which can be regarded as a Nullstellensatz for tropical polynomials.

CONGRUENCES OF IDEMPOTENT SEMIRINGS

Motivation: For the traditional tropical geometry (e.g. Sturmfels, MacLagan, Mikhalkin) a tropical variety (over \(\mathbb{R}^{\max} \)) is a commutative monoid with respect to both (usual addition, with \(\max \) is just the subsemifield of integers in \(\mathbb{R}^{\max} \)).

Definition: A semiring is the ordered pair \((R, +, \times) \) such that \(R \) is a commutative monoid with respect to both (usual addition and multiplication the usual addition being the usual maximum and multiplication the usual \(\times \)).

- All nonzero elements have multiplicative inverse. Examples are:
 - \(\mathbb{B} \) the semifield with two elements \(\{0, 1\} \).
 - \(\mathbb{Z}^{\max} \) the semifield with underlying set \(\{\infty, 0\} \cup \mathbb{R} \) addition being the usual maximum and multiplication the usual addition, with \(-\infty \) playing the role of the 0 element.
 - \(\mathbb{R}^{\max} \) is just the subsemifield of integers in \(\mathbb{R}^{\max} \).

PRIME CONGRUENCES OF IDEMPOTENT SEMIRINGS

- Quotients by a prime are totally ordered with respect to the ordering coming from the idempotent addition.
- For a prime \(P \) of \(\mathbb{B} \) \(\mathbb{R}^{\max} \) the multiplicative monoid of \(\mathbb{B}(x)/P \) \(\mathbb{R}^{\max}(x)/P \) is isomorphic to a quotient of the additive group \(\mathbb{Z}^2 \) resp. to the restiction of a quotient \(\mathbb{Z}^n \) to \(\mathbb{N}^n \) where \(n = n - n = (x_1, \ldots, x_n) \cap \text{Ker}(P)) \).
- To understand the prime quotients of \(\mathbb{B}(x) \) we need to describe the group orderings on the quotients of \(\mathbb{Z}^2 \).

Criteria: These orderings can be given by a defining matrix \(U \) so that \(m > n \) only if \(U_m > U_n \) with respect to lex order. We denote by \(P(U) \) the prime in \(\mathbb{B}(x) \) corresponding to the ordering given by \(U \).

Definition: The dimension of a \(\mathbb{B} \)-algebra \(A \) is the length of the longest chain (with respect to inclusion) of prime congruences in \(A \).

Theorem: For a congruence \(I \) of a \(\mathbb{B} \)-algebra \(A \), \(\text{Rad}(I) = \langle \alpha \mid \text{GP}(\alpha) \cap I \neq \emptyset \rangle \).

- Every prime congruence \(P \) of \(\mathbb{B}(x) \) with trivial kernel is of the form \(P(U) \mathbb{B}(x) \).
- \(\text{dim}(\mathbb{B}(x)/P(U)) = \text{rank } U \) and \(\text{dim}(\mathbb{B}(x)/P(U)\mathbb{B}(x)) = \text{rank } U \) in particular \(\text{dim}(\mathbb{B}(x)) = \text{dim}(\mathbb{B}(x)) = n \).

Theorem: The pair \((f, g)\) lies in the radical of \(\Delta \) of \(\mathbb{B}(x) \) or \(\mathbb{B}(x) \) if and only if the Newton polytopes of \(f \) and \(g \) are the same.

Definition: If \(\text{dim}(\mathbb{B}(x)) = n \) the \(\mathbb{B}(x)/\text{Rad}(\Delta) \) is isomorphic to the \(\mathbb{B}(x) \)-algebra with elements the lattice polytopes and addition being defined as the convex hull of the union, and multiplication as the Minkowski sum.

Analogous results hold over the \(\mathbb{B}(x) \)-algebra \(\mathbb{R}^{\max}(x)/P(U) \) and instead the of Newton polytope \(\text{newt}(f) \) consider, \(\text{newt}(f) = \{\{0, 0, \ldots, y_k\} \in \text{newt}(f) \mid \forall z > y : \{z, y_1, \ldots, y_k\} \notin \text{newt}(f)\} \).

Those semialgebras have dimensions \(n + 1 \), where \(n \) is the number of variables.

TROPICAL NULLSTELLENSATZ

Motivation: We are interested in subsets of \(\mathbb{B}(x) \) where some finite collection \((f_i, g_i) \) of pairs of tropical polynomials agree, i.e., \(\{f_i \mathbb{B}(x) = g_i \mathbb{B}(x)\} \).

Theorem: When \(E \) is finitely generated \(E \) is the intersection of all geometric congruences containing \(E \), in particular \(E \) is a congruence and \(V(E) = V(E) \).

Theorem: For a finitely generated congruence \(E \) in the (Laurent) polynomial semiring over \(\mathbb{B}, \mathbb{R}^{\max} \) or \(\mathbb{R}^{\max} \), \(\text{Rad}(E) \) is the intersection of the primes that contain \(E \) and have a quotient with dimension 1.