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Comments/questions from Maryam

I (Princeton, 2006) I didn’t expect to understand any, but I
understood most of it.

I (Princeton, 2009) I thought Roblin studied these questions.
I (Stanford, 2015) Relation between isoperimetric constants

and resonance-free planes for convex cocompact
surfaces?

I (MSRI, 2015) Can you say something about a sequence of
H-orbits?



We will begin by discussing:

geodesic planes in hyperbolic 3-manifolds



Upper half space model of Hyperbolic 3-space

H3 = {(x1, x2, y) : y > 0}, ds =
p

dx2
1+dx2

2+dy2

y

I PSL2(C) acts on @(H3) = Ĉ by Möbius transformations;
I PSL2(C) = Isom+(H3) (Poincare ext. thm)



Definition
A Kleinian group is a (torsion-free) discrete subgp of PSL2(C).

A complete hyperbolic 3-mfld M can be presented as

M = �\H3.

for a Kleinian group �.



Geodesic planes in M = �\H3

Definition
A geodesic plane in M is a totally geodesic immersion of H2 in
M.



Question

I Can we classify all possible closures of geod. planes in M?
I Are all possible closures are submanifolds of M?



Closed-Dense dichotomy

Theorem (Ratner, Shah 1991)

Let Vol(M) < 1. Any geodesic plane P ⇢ M is
I closed; or
I dense

Moreover, a closed P is properly immersed and has finite area.

This theorem applies only to countably many hyp manifolds by
Mostow rigidity theorem.
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Question
To what extent does this kind of the rigidity theorem persist in
the infinite volume hyperbolic manifolds?



The limit set ⇤ and the convex core of M = �\H3 play important
roles.



Definition (Limit set of �)

⇤(�): the set of all accum. pts of �(z) for any z 2 Ĉ

If Vol(M) < 1, ⇤ = Ĉ.
In general, ⇤ is a fractal set.
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Definition (Convex core of M = �\H3)

core(M) := �\hull(⇤) ⇢ �\H3 = M;

where hull(⇤) is the smallest convex subset of H3 cont. all
geodesics connecting pts in ⇤.

If Vol(M) < 1, M = core(M).
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Definition

I M is geometrically finite iff Vol(1-nbd of core(M)) < 1;
I M is convex cocompact if core(M) is compact.

In the following, we assume

M is convex cocompact, non-fuchsian and Vol(M) = 1.
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Set
M⇤ := the interior of core(M) 6= ;

so M � M⇤ = end components of M.

There are two kinds of planes:
I P with P \ M⇤ 6= ;;
I P with P \ M⇤ = ;.

If P \ M⇤ = ;, P ⇢ M � M⇤.
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Geodesic planes in M⇤

Definition
A geodesic plane in M⇤ is a non-empty intersection

P⇤ := P \ M⇤.

I P⇤ is connected.



Question

I Can we classify possible closures of P⇤ in M⇤?
I Are all closures submanifolds of M⇤?

Yes for convex cocompact acylindrical manifolds.

No in general.
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Convex cocompact Acylindrical manifolds

M convex cocompact, non-fuchsian

Definition
M is acylindrical if

core(M)

I has incompressible boundary, and
I has no essential cylinders.



Definition
A convex cocompact M is acylindrical if ⇤ is a Sierpinski curve.

A cpt ⇤ ⇢ S2 is a Sierpinski curve if

S2 � ⇤ =
[

Bi

is a dense union of Jordan disks Bi with mutually disj. closures
and diam(Bi) ! 0.
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Convex cocompact rigid Acylindrical manifolds

If M is convex cocompact s.t. core(M) has totally geodesic
bdry, M is rigid acylindrical.

Such M are called rigid as the double of core(M) is a closed
3-mfld, obeying Mostow rigidity.



Class of convex cocompact acylindrical mflds

I The acylindrical condition on a CC 3-mfld M depends only
on the topology of M.

I Any hyp. 3-mfld quasi-isometric to a CC acy one is CC
acylindrical.

I QI(�\H3) =
Q

i Teich(Si) where @(core(M)) =
S

i Si .



Closed-Dense dichotomy

Let M be a convex cocompact acylindrical mfld.

Theorem 1 (McMullen-Mohammadi-O.)

Any geodesic plane P⇤ ⇢ M⇤

I closed; or
I dense.

Moreover, a closed P⇤ is properly immersed and has
non-elementary ⇡1.

When Vol(M) < 1, M⇤ = M and so this is a generalization of
Ratner-Shah theorem.
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Properly immersed geodesic planes

Theorem 2 (MMO)

There are at most countably many closed geod. planes in M⇤.

I Except for finitely many, all corresponding planes P have
infinite area (when Vol(M) = 1).



Topological equidistribution

Theorem 3 (MMO)

If P⇤
i ⇢ M⇤ is an inf. seq. of distinct closed planes,

lim P⇤
i = M⇤

in the Hausdorff topology of closed subsets of M⇤.

The acylindrical condition is necessary, since these theorems
are false in general for a cylindrical manifold.
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Counterexamples: Cylindrical manifolds

Consider a fuchsian 3-manifold M ' S ⇥ R.

If � ⇢ S is a geodesic and P ? S with P \ S = �, then

P ' � ⇥ R.
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I If � is wild, so is P ' � ⇥ R.
I If � is closed, so is P.
I As 9 uncountably many P s.t. P \ S = �, 9 uncountably

many closed planes.

For M = S ⇥ R fuchsian, core(M) = S; M⇤ = ;.
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Counterexamples:Quasi-fuchsian mflds

By bending along a separating simple closed geodesic �0, we
get a quasi-fuchsian mfld M with M⇤ 6= ; s.t. if � is far enough
from �0,

P = � ⇥ R



From now on, assume that

M = �\H3 : convex cocompact, acylindrical

In order to study the closure of a plane in M, we lift this problem
to the frame bundle

F(M)

which is a homogeneous space �\PSL2(C) and study
homogeneous dynamics on it.
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PSL2(C)= Frame bundle F(H3)

g $ (e1, e2, e3)

F(M) = �\F(H3) = �\G



PSL2(R)-orbit closure

I G := PSL2(C), H := PSL2(R).

F(M) = �\G � xH
# ⇡ #

M = �\H3 � P

Classification of
possible closures of P⇤ ⇢ M⇤

follows from classification
of H-orbit closures in �\G.
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H-orbit closure theorem

Let F ⇤ be the minimal H-inv (open) subset above M⇤, i.e.,

F ⇤ :=
[

{xH : ⇡(xH) \ M⇤ 6= ;} ⇢ �\G.

Note if Vol(M) < 1, then F ⇤ = �\G.

Theorem
8x 2 F ⇤, xH is closed or dense in F ⇤;
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Description of H-orbit closures in �\G
= Description of �-orbit closures in G/H

G/H = space of all oriented circles in S2 :=C



�-orbit closure theorem

C⇤ := {C 2 C : C separates ⇤}

Theorem
8C 2 C⇤, �C is closed or dense in C⇤.
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Scarcity of recurrence of unipotent flow

Our approach is based on homogeneous dynamics, more
precisely, unipotent dynamics in �\G for the action of the
unipotent group:

U := {ut =

✓
1 0
t 1

◆
: t 2 R}.



The main difficulty in carrying out unipotent dynamics in the
infinite volume setting is the lack of recurrence of unipotent
flows.

When Vol �\G = 1, for almost all x and for any compact
⌦ ⇢ �\G,

lim sup
1
T
`{t 2 [0,T ] : xut 2 ⌦} = 0.



K -thick recurrence in the acylindrical case

We construct an A-inv. compact subset ⌦ ⇢ �\G and K > 1 s.t.

I 8x 2 ⌦, the orbit xU has the K -thick recurrence to ⌦, that
is, 8T > 0,

xut 2 ⌦ for some t 2 [�KT ,�T ] [ [T ,KT ];

I F ⇤ ⇢ ⌦H



Construction of such a compact subset ⌦ ⇢ �\G is directly
related to the study of

I the structure of ⇤
I its circular slices



Theorem A
The limit set of a CC acylindrical gp is a Sierpinski curve of
positive modulus.

For S2 � ⇤ =
S

Bi , there is a unif. lower bdd for the modular
distances among Bi ’s:

mod(⇤) := inf
i 6=j

mod(S2 � (Bi [ Bj)) > 0



Circular slices of a Sierpinski curve

Theorem B
Let ⇤ be a Sierpinski curve of positive modulus. Then for any C
separating ⇤, C \ ⇤ contains a Cantor set TC of modulus ✏ > 0.

For C � TC =
S

Ii ,

mod(TC) := inf
i 6=j

mod(S2 � (Ii [ Ij)) � ✏



Circular slices of the limit set

Theorem
Let � be a CC acylindrical gp. For any circle C separating ⇤,
C \ ⇤ contains a Cantor subset TC of modulus ✏ > 0.

⌦ = �\{geodesics connecting pts in [C2CTC ⇢ ⇤ }

has the desired K -thick recurrence property for unipotent flows
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Rigid case

Theorem
For any C 2 C⇤, TC = C \ ⇤ is a Cantor set of modulus ✏ > 0.

If C � ⇤ =
S

Ii with Ii ⇢ Bi ,

d(hull(Ii), hull(Ij)) � d(hull(Bi), hull(Bj)) � sys(Double of core(M))/2



Rigid case

So the renormalized frame bundle of M

RFM =�\{geod. connecting pts in ⇤} ⇢ �\G

has the desired recurrence property for unipotent flows.



Geometrically finite acylindrical mfld

Any hyperbolic 3-mfld M with finitely generated ⇡1(M) has a
compact conn. submanifold N, called Scott core, s.t. the
inclusion N ⇢ M induces an isomorphism ⇡1(N) ' ⇡1(M).

Definition
A geometrically finite M is acylindrical if

Scott -core(M)

I has incompressible boundary, and
I has no essential cylinders.



Theorem (Benoist-O.)

Let M be geometrically finite and acylindrical. Then
I Any geodesic plane P⇤ in M⇤ is closed or dense.
I There are only countably many closed P⇤.
I Any inf. seq of distinct closed P⇤

i become dense in M⇤.



Circular slices of the limit set

Theorem
Let � be a geometrically finite acylindrical gp. For any circle C
separating ⇤, C \ ⇤ contains a Cantor subset of modulus ✏ > 0.

In this case, ⇤ is a quotient of a Sierpinksi curve of positive
modulus:

S2 � ⇤ =
[

T`

where T`’s are maximal trees of disks so that the modular
distance between T` and Tk are uniformly bounded from below
for all ` 6= k
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Planes and Coverings

Let
p : M ! M0 be a covering map

where M is a GF acy hyp 3-mfld and M0 has finite vol.

Theorem (McMullen-Mohammadi-O., Benoist-O.)

Let M0 be arithmetic. For a geod. plane P ⇢ M with P⇤ 6= ;,
I P⇤ is closed in M⇤ iff p(P) is closed in M0;
I P⇤ is dense in M⇤ iff p(P) is dense in M0.

Theorem (Benoist -O.)

9 a non-arith. mfld M0 covered by M and a geod. plane P ⇢ M
s.t P⇤ is closed in M⇤ and p(P) is dense in M0.
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