1. Suppose that a test for opium use has a 2% false positive rate and a 5% false negative rate. Furthermore, suppose that 1% of peole actually use opium.
(a) Find the probability that someone who tests negative for opium use does not use opium.
(b) Find the probability that someone who tests positive for opium use actually uses opium.
2. Suppose that E, F_{1}, F_{2}, F_{3} are events from a sample space S and that F_{1}, F_{2}, and F_{3} are mutually disjoint and their union is S. Find $p\left(F_{2} \mid E\right)$ if $p\left(E \mid F_{1}\right)=2 / 7, p\left(E \mid F_{2}\right)=3 / 8, p\left(E \mid F_{3}\right)=1 / 2$, $p\left(F_{1}\right)=1 / 6, p\left(F_{2}\right)=1 / 2$, and $p\left(F_{3}\right)=1 / 3$.
3. What is the probability that a five-card poker hand contains exactly one ace? What is the probability of at least one ace?
4. What is the probability that a five-card poker hand contains two pairs, that is, two of each of two different kinds and a fifth card of a third kind?
5. What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
6. Show that if E and F are events, then $p(E \cap F) \geq p(E)+p(F)-1$.
