1. Show that if A is a subset of B, then the power set of A is a subset of the power set of B.
2. Find all solutions to the system of congruences:

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 1 & (\bmod 4) \\
x \equiv 3 & (\bmod 5)
\end{array}
$$

3 . Find the prime factorization of 10 !.
4. Let m be a positive integer. Show that $a \bmod m=b \bmod m$ if $a \equiv b$ $(\bmod m)$.
5. Let a and b be real numbers with $a<b$. Use the floor and/or ceiling functions to find an expression for the number of integers n that satisfy the inequality $a \leq n \leq b$.
6. Devise an algorithm that, given the binary expansions of the integers a and b, determines whether $a>b, a=b$, or $a<b$.

