Math 55 worksheet, February 23, 2009

- 1. Give a recursive definition of:
 - (a) the set of positive even integers.
 - (b) the set of positive integers congruent to 2 modulo 3.
 - (c) the set of polynomials with integer coefficents
- 2. Use induction to prove that that if A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n are sets such that $A_j \subseteq B_j$ for $j = 1, 2, \ldots, n$, then

$$\bigcup_{j=1}^{n} A_j \subseteq \bigcup_{j=1}^{n} B_j$$

- 3. Use induction to prove that n^2-1 is divisible by 8 whenever n is an odd positive integer.
- 4. Show that $f_{n+1}f_{n-1} f_n^2 = (-1)^n$ when n is a positive integer, where f_n is the nth Fibonacci number.
- 5. Show that n lines separate the plane into $(n^2 + n + 2)/2$ regions if no two of these lines are parallel and no three pass through a common point.