1. Give a recursive definition of:
(a) the set of positive even integers.
(b) the set of positive integers congruent to 2 modulo 3 .
(c) the set of polynomials with integer coefficents
2. Use induction to prove that that if $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ are sets such that $A_{j} \subseteq B_{j}$ for $j=1,2, \ldots, n$, then

$$
\bigcup_{j=1}^{n} A_{j} \subseteq \bigcup_{j=1}^{n} B_{j}
$$

3. Use induction to prove that $n^{2}-1$ is divisible by 8 whenever n is an odd positive integer.
4. Show that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ when n is a positive integer, where f_{n} is the nth Fibonacci number.
5. Show that n lines separate the plane into $\left(n^{2}+n+2\right) / 2$ regions if no two of these lines are parallel and no three pass through a common point.
