1. Show that if a is an integer and d is a positive integer greater than 1 , then the quotient and remainder obtained when a is divided by d are $\lfloor a / d\rfloor$ and $a-d\lfloor a / d\rfloor$ respectively.
2. Find a formula for the integer with smallest absolute value that is congruent to an integer a modulo m, where m is a positive integer.
3. Prove that if n is an odd integer, then $n^{2} \equiv 1(\bmod 8)$.
4. An ISBN consists of 10 digits $x_{1} x_{2} \ldots x_{10}$, chosen such that $\sum_{i=1}^{10} i x_{i} \equiv 0$ $(\bmod 11)$. Why is did they choose this formula and not $\sum_{i=1}^{10} x_{i} \equiv 0$ $(\bmod 11)$? Given the first 9 digits, how do you choose the 10 th digit so that the the string is a valid ISBN? (Note that you might have to count 10 as a digit. It is represented by an X.)
5. Show that if n and k are positive integers, then $\lceil n / k\rceil=\lfloor(n-1) / k\rfloor+1$.
