1. Determine whether each of these statements is true or false:
(a) $x \in\{x\}$
(b) $\{x\} \in\{\{x\}\}$
(c) $\{x\} \subseteq\{x\}$
(d) $\emptyset \subseteq\{x\}$
(e) $\{x\} \in\{x\}$
(f) $\emptyset \in\{x\}$
2. The symmetric difference of A and B, denoted by $A \oplus B$ is the set containing those elements in either A or B, but not in both A and B.

Determine whether the symmetric differences is associative; that is, if A, B, and C are sets, does it follow that $A \oplus(B \oplus C)=(A \oplus B) \oplus C$?
3. Let f be a function from A to B. Let S and T be subsets of A, and let U and V be subsets of B. Three of the following equalities are true and one is false. Prove the true statements and find a counterexample for the false one.
(a) $f(S \cup T)=f(S) \cup f(T)$
(b) $f(S \cap T)=f(S) \cap f(T)$
(c) $f^{-1}(U \cup V)=f^{-1}(U) \cup f^{-1}(V)$
(d) $f^{-1}(U \cap V)=f^{-1}(U) \cap f^{-1}(V)$
4. Show that a set S is infinite if and only if there is a proper subset A of S such that there is a one-to-one correspondence between A and S.
5. Show that the polynomial function $f: \mathbf{Z}^{+} \times \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$with $f(m, n)=$ $(m+n-2)(m+n-1) / 2+m$ is one-to-one and onto.

