Math 54 worksheet, October 19, 2009

1. Let W be the vector space in \mathbb{R}^{3} spanned by the vectors

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
5 \\
-2
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
3
\end{array}\right]\right\} .
$$

Find an orthonormal basis for W.
Solution: An orthonormal basis is:

$$
\left\{\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
-1 / \sqrt{3}
\end{array}\right],\left[\begin{array}{c}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right]\right\}
$$

2. Find the point in W closest to the vector

$$
\left[\begin{array}{c}
5 \\
-3 \\
-1
\end{array}\right]
$$

Solution:

$$
\left[\begin{array}{c}
3 \\
-3 \\
-3
\end{array}\right]
$$

3. If \mathbf{u} is any vector in \mathbb{R}^{n}, show that the set $\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{u} \cdot \mathbf{x}=0\right\}$ is a subspace of \mathbb{R}^{n}.
4. Show that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^{n}, then it is a basis for \mathbb{R}^{n}.
5. Suppose A is an orthogonal $n \times n$ matrix, i.e. the column vectors form an orthogonal set. Show that A is invertible.
6. Show that if A is an orthogonal $n \times n$ matrix, and λ is a (real) eigenvalue of A, then λ is either 1 or -1 . (Hint: if \mathbf{v} is an eigenvector, think about the inner product of $A \mathbf{v}$ with itself.)
