1. Write the solutions to the following system of equations in parametric vector form:

$$
\begin{aligned}
3 x_{1}+2 x_{2}+2 x_{3} & =7 \\
2 x_{1}-2 x_{2}+8 x_{3} & =8 \\
x_{1}+4 x_{2}-6 x_{3} & =-1
\end{aligned}
$$

The solutions are:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]
$$

2. Find bases for the row space, column space, null space, and left null space of the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 4 \\
3 & -2 & 10 \\
-1 & -4 & 6
\end{array}\right]
$$

Indicate which of these are Schubert bases and which are reverse Schubert bases.
Reverse Schuber basis for $\operatorname{Nul}(A)$ is $\left\{\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]\right\}$. Schubert basis for $\operatorname{Row}(A)$ is $\left\{\left[\begin{array}{lll}1 & 0 & 2\end{array}\right],\left[\begin{array}{lll}0 & 1 & -2\end{array}\right]\right\}$. Basis for $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ -4\end{array}\right]\right\}$. Reverse $\operatorname{Schubert}$ basis for $\operatorname{LeftNul}(A)$ is $\left\{\left[\begin{array}{lll}-14 & 5 & 1\end{array}\right]\right\}$.
3. Find the inverse and compute the determinant of the following matrix:

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 1 & -1 & -3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The determinant is 1 and the inverse is:

$$
\left[\begin{array}{cccc}
1 & -2 & -5 & 4 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the transformation that projects each vector $\mathbf{x}=$ $\left(x_{1}, x_{2}, x_{3}\right)$ onto the plane $x_{2}=0$, so $T(\mathbf{x})=\left(x_{1}, 0, x_{3}\right)$. Show that T is a linear transformation and find its matrix.

The matrix is:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5. Let V be the vector space of all polynomials of degree at most 3. Let W be the set of all polynomials f in V such that $f(2)=0$. Prove that W is a subspace. Find a basis for W. Let U be the set of all polynomials f in V such that $f(2)=1$. Is U a subspace?
A basis for W is $\left\{x^{3}-8, x^{2}-4, x-2\right\}$. U is not a subspace because $x-1$ is in U, but $2(x-1)=2 x-2$ is not.
