1. Find the inverse of

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

using both row reduction and the adjugate. Check that you get the same answer.

$$
A^{-1}=\left[\begin{array}{ccc}
8 & 3 & 1 \\
10 & 4 & 1 \\
\frac{7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

2. Use the adjugate to find a formula for the inverse of a 2×2 matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{gathered}
$$

3. Compute the determinant of the matrix

$$
B=\left[\begin{array}{ccc}
2 & -3 & 4 \\
1 & 0 & -2 \\
-3 & 1 & 4
\end{array}\right]
$$

Note that this is just a rearrangement of the rows from Problem 1. In general, if B is a rearrangement of the rows of A, how can you figure out $\operatorname{det}(B)$ in terms of $\operatorname{det}(A) ?$
4. Find an example of 3×3 matrices A and B where $\operatorname{det}(A+B)$ does not equal $\operatorname{det}(A)+\operatorname{det}(B)$.
One example that works is:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad A+B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and then $\operatorname{det}(A)=0, \operatorname{det}(B)=0$ and $\operatorname{det}(A+B) \neq 0$.

$$
\operatorname{det} B=\operatorname{det} A=2
$$

In general $\operatorname{det} B= \pm \operatorname{det} A$. The sign is positive if you can get from A to B using an even number of swaps and negative otherwise.
5. In this problem, we will use the properties of the determinant to show that $\operatorname{adj}(A)$ gives a formula for the inverse of a matrix. Let A be an $n \times n$ matrix and let $\operatorname{adj}(A)$ be the adjugate. We will prove that $A \cdot \operatorname{adj}(A)=\operatorname{det}(A) I_{n}$.
(a) Explain why the product of the i th row of A (a $1 \times n$ matrix) with the i th column of $\operatorname{adj}(A)$ (an $n \times 1$ matrix) is the $1 \times 1 \operatorname{matrix} \operatorname{det}(A)$.
(b) Let $A(i, j)$ be the matrix formed by removing the j th row and replacing it with the i th row. If i and j are different, explain why the product of the i th row of A with the j th column of $\operatorname{adj}(A)$ is $\operatorname{det}(A(i, j))$.
(c) Explain why $\operatorname{det}(A(i, j))=0$ if i and j are different.
(d) Explain how this proves the formula that $A \cdot \operatorname{adj}(A)=\operatorname{det}(A) I_{n}$ and if A is invertible, that $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

