Math 54 worksheet, September 14, 2009

1. Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which consists of first rotating 30 degrees about the z axis and then rotating 90 degrees about the x axis. (I haven't specified the directions of the rotations. Use whichever ones you prefer.) What is the matrix for T ? Can you describe T as a single rotation?
2. Let

$$
A=\left[\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
2 & -5 & 7 & 4 \\
1 & -3 & 10 & 4
\end{array}\right]
$$

Find

- A basis for $\operatorname{Col}(A)$
- A Schubert basis for $\operatorname{Row}(A)$
- A reverse Schubert basis for $\operatorname{Null}(A)$
- The dimension of $\operatorname{LeftNull}(A)$ (Hint: you can figure this out just from the echelon form of A. You don't need to row reduce A^{T})

Write the second row of A as a linear combination of the Schubert basis for $\operatorname{Row}(A)$.
3. Let A be the same as in the previous question. Is the vector

in $\operatorname{Null}(A)$? Is the vector $\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right]$ in $\operatorname{Row}(A)$? Is the vector space spanned by $\left[\begin{array}{llll}2 & -4 & -6 & 0\end{array}\right]$ and $\left[\begin{array}{llll}-1 & 3 & -10 & -4\end{array}\right]$ contained in $\operatorname{Row}(A)$?
4. Let

$$
B=\left[\begin{array}{ccc}
-1 & 2 & -4 \\
3 & -6 & 12 \\
2 & -4 & 8
\end{array}\right]
$$

Find a reverse Schubert basis for $\operatorname{LeftNull}(B)$.
5. Let S be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which takes a vector and rotates it by 60 degrees around the axis spanned by ($1,1,0$). Can you find a matrix for S ?

Hermann Schubert (1848-1911)

