1 Define what it means for a set of vectors to be linearly dependent (3 points).

A linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is an expression $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n$ where c_1, \ldots, c_n are scalars.

2 Define row space (3 points).

If A is an $n \times m$ matrix, then each row of A is a vector in \mathbb{R}^m . The row space of the matrix A is defined to be the span of these vectors, i.e. the set of all linear combinations of the rows of A.

3 Define the inverse of a matrix (3 points).

The inverse of an $n \times n$ matrix A is an $n \times n$ matrix, written A^{-1} such that $AA^{-1} = A^{-1}A = I_n$, where I_n is the $n \times n$ identity matrix.

4 Define left nullspace (3 points).

The *left nullspace* of an $n \times m$ matrix A is the set of all vectors \mathbf{x} in \mathbb{R}^n such that $\mathbf{x}^T A = 0$.

5 Define linear subspace (3 points).

A subset V of a vector space is a linear subspace if the following are all true:

- 1. The vector $\mathbf{0}$ is in V.
- 2. If \mathbf{v} and \mathbf{w} are in V, then $\mathbf{v} + \mathbf{w}$ is in V.
- 3. If \mathbf{v} is in V and c is a real number, then $c\mathbf{v}$ is in V.
- 6 Show that if the span of $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is all of \mathbb{R}^n , and A is an invertible matrix, then the span of $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_n\}$ is also all of \mathbb{R}^n (5 points).

Let **v** be any vector in \mathbb{R}^n . Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ spans \mathbb{R}^n , $A^{-1}\mathbf{v}$ can be written as $A^{-1}\mathbf{v} = c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n$ for some scalars c_1, \ldots, c_n . Multiplying this equation by A, we have the equations:

$$AA^{-1}\mathbf{v} = A(c_1\mathbf{v}_1 + \cdots + c_nv_n)$$
$$\mathbf{v} = c_1A\mathbf{v}_1 + \cdots + c_nA\mathbf{v}_n.$$

Thus, \mathbf{v} is in the span of $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_n\}$. Therefore, the span of these vectors is all of \mathbb{R}^n .