1 Define what it means for a set of vectors to be linearly dependent (3 points).
A linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an expression $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ where c_{1}, \ldots, c_{n} are scalars.

2 Define row space (3 points).
If A is an $n \times m$ matrix, then each row of A is a vector in \mathbb{R}^{m}. The row space of the matrix A is defined to be the span of these vectors, i.e. the set of all linear combinations of the rows of A.

3 Define the inverse of a matrix (3 points).
The inverse of an $n \times n$ matrix A is an $n \times n$ matrix, written A^{-1} such that $A A^{-1}=A^{-1} A=I_{n}$, where I_{n} is the $n \times n$ identity matrix.

4 Define left nullspace (3 points).
The left nullspace of an $n \times m$ matrix A is the set of all vectors \mathbf{x} in \mathbb{R}^{n} such that $\mathbf{x}^{T} A=0$.

5 Define linear subspace (3 points).
A subset V of a vector space is a linear subspace if the following are all true:

1. The vector $\mathbf{0}$ is in V.
2. If \mathbf{v} and \mathbf{w} are in V, then $\mathbf{v}+\mathbf{w}$ is in V.
3. If \mathbf{v} is in V and c is a real number, then $c \mathbf{v}$ is in V.

6 Show that if the span of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is all of \mathbb{R}^{n}, and A is an invertible matrix, then the span of $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right\}$ is also all of \mathbb{R}^{n} (5 points).

Let \mathbf{v} be any vector in \mathbb{R}^{n}. Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ spans $\mathbb{R}^{n}, A^{-1} \mathbf{v}$ can be written as $A^{-1} \mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots c_{n} \mathbf{v}_{n}$ for some scalars c_{1}, \ldots, c_{n}. Multiplying this equation by A, we have the equations:

$$
\begin{aligned}
A A^{-1} \mathbf{v} & =A\left(c_{1} \mathbf{v}_{1}+\cdots c_{n} v_{n}\right) \\
\mathbf{v} & =c_{1} A \mathbf{v}_{1}+\cdots c_{n} A \mathbf{v}_{n}
\end{aligned}
$$

Thus, \mathbf{v} is in the span of $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right\}$. Therefore, the span of these vectors is all of \mathbb{R}^{n}.

