1 Define the null space of a matrix (3 points).
If A is an $n \times m$ matrix, the null space of A is the set of vectors x in \mathbb{R}^{m} such that $A x=0$.

2 Define what it means for a set of vectors to be linearly dependent (3 points).
A set of vectors v_{1}, \ldots, v_{n} is linearly dependent if there exists real numbers c_{1}, \ldots, c_{n}, not all zero, such that $c_{1} v_{1}+\cdots c_{n} v_{n}=0$.

3 Define the dimension of a vector space (3 points).
A basis for a vector space V is a set of vectors which span V and are linearly independent. The dimension of a vector space is the size of a basis.

4 Give two equivalent definitions of the rank of a matrix (3 points). Neither definitions should involve echelon form.

Let A be an $n \times m$ matrix. Then the columns of A are vectors in \mathbb{R}^{n} and the rows are vectors in \mathbb{R}^{m}. The rank of A is the dimension of the span of the columns of A, which is equal to the dimension of the span of the rows of A.

5 Define a linear transformation from a vector space V to a vector space W (3 points).

A linear transformation from V to W is a function T which takes elements in V to elements such that:

1. For any u and v in $V, T(v+w)=T(v)+T(w)$.
2. For any v in V and c a scalar, $T(c v)=c T(v)$.

6 Recall that the standard basis for \mathbb{R}^{n} consists of the vectors e_{1}, \ldots, e_{n}, where $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0)$, and so on. Explicitly, e_{i} is the vector which is 1 in position i and 0 elsewhere. Show that e_{1}, \ldots, e_{n} form a basis for \mathbb{R}^{n} (5 points).

A basis is a set which is both linearly independent and spans the vector space.

First, we show linear independence. Suppose that $c_{1} e_{1}+\cdots+c_{n} e_{n}=0$. Since $c_{i} e_{i}$ is the vector which is c_{i} in the i th position and 0 elsewhere, $c_{1} e_{1}+\cdots=$ $c_{n} e_{n}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Thus, $c_{1}=c_{2}=\cdots=c_{n}=0$, so e_{1}, \ldots, e_{n} are linearly independent.

Second, we show that the vectors span \mathbb{R}^{n}. If $v=\left(c_{1}, \ldots, c_{n}\right)$ is any vector in \mathbb{R}^{n}, then $v=c_{1} e_{1}+\cdots+c_{n} e_{n}$, as stated above. Thus, e_{1}, \ldots, e_{n} span \mathbb{R}^{n}.

