1 Define eigenspace (2.5 points).
For a matrix A and λ an eigenvalue of A, the λ-eigenspace is the set of all vectors x such that $A x=\lambda x$.

2 Define what it means for a matrix to be diagonalizable (2.5 points).
A matrix A is diagonalizable if and only if there exists a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$.

3 Define what it means for a quadratic form to be indefinite (2.5 points).
A quadratic form $Q(x)$ is indefinite if it assumes both positive and negative values, i.e. $Q(x)<0$ for some value of x and $Q(x)>0$ for some other value of x.

4 Define orthogonal projection onto a subspace (2.5 points).

If L is a linear subspace of \mathbb{R}^{n} and x a vector in \mathbb{R}^{n}, then the orthogonal projection of x onto L is the vector v such that $\|x-v\|$ is minimized. Equivalently, it is the vector v such that $x-v$ is orthogonal to every vector in L.

