1 Define eigenspace (2.5 points).

For a matrix A and λ an eigenvalue of A, the λ -eigenspace is the set of all vectors x such that $Ax = \lambda x$.

2 Define what it means for a matrix to be diagonalizable (2.5 points).

A matrix A is *diagonalizable* if and only if there exists a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

3 Define what it means for a quadratic form to be indefinite (2.5 points).

A quadratic form Q(x) is indefinite if it assumes both positive and negative values, i.e. Q(x) < 0 for some value of x and Q(x) > 0 for some other value of x.

4 Define orthogonal projection onto a subspace (2.5 points).

If L is a linear subspace of \mathbb{R}^n and x a vector in \mathbb{R}^n , then the orthogonal projection of x onto L is the vector v such that ||x - v|| is minimized. Equivalently, it is the vector v such that x - v is orthogonal to every vector in L.