1 Find a general solution (6 points) for the system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \quad A=\left[\begin{array}{cc}
1 & 3 \\
12 & 1
\end{array}\right]
$$

Find the solution with initial conditions $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ (4 points).
The characteristic polynomial of A is:

$$
\left|\begin{array}{cc}
1-\lambda & 3 \\
12 & 1-\lambda
\end{array}\right|=1-2 \lambda+\lambda^{2}-36=\lambda^{2}-2 \lambda-35=(\lambda-7)(\lambda+5)
$$

Thus, the eigenvalues are 7 and -5 . The 7 -eigenvectors are the null space of the matrix:

$$
\left[\begin{array}{cc}
-6 & 3 \\
12 & -6
\end{array}\right]
$$

and a basis for the eigenspace is $\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$.
The -5 -eigenvectors are the null space of the matrix:

$$
\left[\begin{array}{cc}
6 & 3 \\
12 & 6
\end{array}\right]
$$

and a basis for the eigenspace is $\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}$.
Putting this together, the general solution is

$$
\mathbf{x}(t)=C_{1} e^{7 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{-5 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

For any real numbers C_{1} and C_{2}.
The value of $\mathbf{x}(0)$ is

$$
\left[\begin{array}{c}
C_{1}+C_{2} \\
2 C_{1}-2 C_{2}
\end{array}\right]
$$

This will be $\left[\begin{array}{ll}2 & 0\end{array}\right]^{T}$ when $C_{1}=C_{2}=1$. Thus, the solution with the given initial conditions is

$$
\mathbf{x}(t)=\left[\begin{array}{c}
e^{7 t}+e^{-5 t} \\
2 e^{7 t}-2 e^{-5 t}
\end{array}\right]
$$

