1 Find the general solution to the differential equation (5 points)

$$
y^{\prime \prime}+y^{\prime}-2 y=e^{-2 t}
$$

The auxillary equation of the homogeneous differential equation is $r^{2}+r-2=$ $(r+2)(r-1)$ so the roots are $r=-2$ and $r=1$. Thus, the general solution to the homogeneous equation is $A e^{-2 t}+B e^{t}$.

Our guess for a solution to the inhomogeneous equation would be $a e^{-2 t}$, but this is a solution to the homogeneous equation. Thus, we try $y=a t e^{-2 t}$ where a is an unknown coefficient. The derivatives are

$$
\begin{aligned}
y^{\prime} & =a e^{-2 t}-2 a t e^{-2 t} \\
y^{\prime \prime} & =-2 a e^{-2 t}-2 a e^{-2 t}+4 a t e^{-2 t}=-4 a e^{-2 t}+4 a t e^{-2 t}
\end{aligned}
$$

Substituting this into the differential equation we get:

$$
\begin{aligned}
y^{\prime \prime}+y^{\prime}-2 y & =\left(-4 a e^{-2 t}+4 a t e^{-2 t}\right)+\left(a e^{-2 t}-2 a t e^{-2 t}\right)-2\left(a t e^{-2 t}\right) \\
& =-3 a e^{-2 t}
\end{aligned}
$$

If this is equal to the right hand side, $e^{-2 t}$, then $a=-1 / 3$, so the general solution is

$$
y=A e^{-2 t}+B e^{t}-\frac{1}{3} t e^{-2 t}
$$

2 Find a solution to the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

with initial conditions $y(0)=2$ and $y^{\prime}(0)=1$ (5 points).
The auxillary equation is $r^{2}+2 r+2$. Using the quadratic formula, the roots are:

$$
r=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 2}}{2}=-1 \pm \frac{\sqrt{-4}}{2}=-1 \pm i
$$

Thus, the general solution is $y=A e^{-t} \cos t+B e^{-t} \sin t$.
The derivative is

$$
y^{\prime}=-A e^{-t} \cos t-A e^{-t} \sin t-B e^{-t} \sin t+B e^{-t} \cos t
$$

Evaluating at $t=0$, we have

$$
y(0)=A \quad \text { and } \quad y^{\prime}(0)=-A+B
$$

Our initial conditions tell us that $A=2$ and $-A+B=1$, so $B=3$. Therefore, the solution is $y(t)=2 e^{-t} \cos t+3 e^{-t} \sin t$.

