1 Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points: $(1,0),(2,1),(4,2),(5,3)$. (5 points)
We have the matrices:

$$
X=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 5
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]
$$

The normal equations are:

$$
\begin{aligned}
X^{T} X \beta & =X^{T} y \\
{\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right] } & =\left[\begin{array}{c}
6 \\
25
\end{array}\right]
\end{aligned}
$$

The determinant of the matrix on the left is $4 \cdot 46-12^{2}=184-144=40$. Thus, the solution is

$$
\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\frac{1}{40}\left[\begin{array}{cc}
46 & -12 \\
-12 & 4
\end{array}\right]\left[\begin{array}{c}
6 \\
25
\end{array}\right]=\frac{1}{40}\left[\begin{array}{c}
-24 \\
28
\end{array}\right]=\left[\begin{array}{c}
-3 / 5 \\
7 / 10
\end{array}\right]
$$

So, the line of best-fit is $y=\frac{-3}{5}+\frac{7}{10} x$
2 Orthogonally diagonalize the matrix

$$
A=\left[\begin{array}{ccc}
7 & -4 & 4 \\
-4 & 5 & 0 \\
4 & 0 & 9
\end{array}\right]
$$

Its eigenvalues are 13, 7, and 1 (5 points).
For the eigenvalue 13, we have

$$
\left[\begin{array}{ccc}
-6 & -4 & 4 \\
-4 & -8 & 0 \\
4 & 0 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
-6 & -4 & 4 \\
4 & 0 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 8 & 4 \\
0 & -8 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right]
$$

A 13-eigenvector is $\left[\begin{array}{lll}2 & -1 & 2\end{array}\right]^{T}$. For $\lambda=7$,

$$
\left[\begin{array}{ccc}
0 & -4 & 4 \\
-4 & -2 & 0 \\
4 & 0 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 / 2 & 0 \\
0 & -4 & 4 \\
4 & 0 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 / 2 & 0 \\
0 & 1 & -1 \\
0 & -2 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

A 7-eigenvector is $\left[\begin{array}{lll}-1 & 2 & 2\end{array}\right]^{T}$. For the eigenvalue 1 ,

$$
\left[\begin{array}{ccc}
6 & -4 & 4 \\
-4 & 4 & 0 \\
4 & 0 & 8
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -2 / 3 & 2 / 3 \\
0 & 4 / 3 & 8 / 3 \\
0 & 8 / 3 & 16 / 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

A 1-eigenvector is $\left[\begin{array}{lll}-2 & -2 & 1\end{array}\right]$. Note that our three eigenvectors are orthogonal. Each of them has length 3, so we normalize them and make them the columns of P :

$$
P=\left[\begin{array}{ccc}
2 / 3 & -1 / 3 & -2 / 3 \\
-1 / 3 & 2 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
13 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and then $A=P D P^{-1}$.

