1 Find an invertible matrix P and a matrix C such that

$$
\left[\begin{array}{cc}
5 & -5 \\
1 & 1
\end{array}\right]=P C P^{-1} \quad \text { where } C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

(4 points)
The characteristic equation is

$$
\left|\begin{array}{cc}
5-\lambda & -5 \\
1 & 1-\lambda
\end{array}\right|=5-6 \lambda+\lambda^{2}+5=\lambda^{2}-6 \lambda+10
$$

By the quadratic formula, its roots are:

$$
\frac{6 \pm \sqrt{36-40}}{2}=\frac{6 \pm 2 i}{2}=3 \pm i
$$

Choosing the " + " root, we have that

$$
C=\left[\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right]
$$

To find, P, we need to find a corresponding eigenvector, which is an element of the null space of the matrix

$$
\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]
$$

By looking at the second row, we can see that

$$
\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

is an eigenvector. Taking the real and imaginary parts of this matrix, we have

$$
P=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

2 Find an orthonormal basis for the vector space spanned by the vectors: (6 points)

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
4 \\
-2 \\
-2 \\
3
\end{array}\right]
$$

We set $u_{1}=v_{1}$. Then we compute:

$$
\begin{aligned}
& v_{2} \cdot u_{1}=0-2+0+0=-2 \\
& u_{1} \cdot u_{1}=1+1+0+0=2
\end{aligned}
$$

Thus,

$$
u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

To find u_{3}, we compute

$$
\begin{aligned}
& v_{3} \cdot u_{1}=4-2+0+0=2 \\
& v_{3} \cdot u_{2}=4+2+0+3=9 \\
& u_{2} \cdot u_{2}=1+1+0+1=3
\end{aligned}
$$

Thus,

$$
u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left[\begin{array}{c}
4 \\
-2 \\
-2 \\
3
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-3\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-2 \\
0
\end{array}\right]
$$

The vectors u_{1}, u_{2}, and u_{3} form an orthogonal basis. To find an orthonormal basis, we divide each by the square root of its dot product with itself to get the basis:

$$
\left\{\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right]\right\}
$$

