1 Find matrices P and D, with D diagonal, such that: (4 points)

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right]=P D P^{-1}
$$

The characteristic equation of the matrix is

$$
\left|\begin{array}{cc}
2-\lambda & 3 \\
4 & 1-\lambda
\end{array}\right|=2-3 \lambda+\lambda^{2}-12=\lambda^{2}-3 \lambda-10=(\lambda-5)(\lambda+2) .
$$

(The factorization was found by looking for factors of -10 which added to -3 . I could have also used the quadratic formula.) Thus the eigenvalues are 5 and -2 . For the eigenvalue 5 , the eigenvectors are the null space of the matrix:

$$
\left[\begin{array}{cc}
2-5 & 3 \\
4 & 1-5
\end{array}\right]=\left[\begin{array}{cc}
-3 & 3 \\
4 & -4
\end{array}\right]
$$

which is obviously the vector space spanned by

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For, the eigenvalue 2 , the eigenvectors are the null space of:

$$
\left[\begin{array}{cc}
2-(-2) & 3 \\
4 & 1-(-2)
\end{array}\right]=\left[\begin{array}{ll}
4 & 3 \\
4 & 3
\end{array}\right]
$$

which is the vector space spanned by

$$
\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

Thus, we have

$$
P=\left[\begin{array}{cc}
1 & 3 \\
1 & -4
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
5 & 0 \\
0 & -2
\end{array}\right]
$$

2 Define eigenvalue (2 points).
An eigenvalue of a matrix A is a scalar λ such that $A v=\lambda v$ for some non-zero vector v.

3 Consider the bases

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
7 \\
5
\end{array}\right],\left[\begin{array}{l}
-3 \\
-1
\end{array}\right]\right\} \quad \mathcal{C}=\left\{\left[\begin{array}{c}
1 \\
-5
\end{array}\right],\left[\begin{array}{c}
-2 \\
2
\end{array}\right]\right\}
$$

Find the change of coordinates matrix from \mathcal{B} to \mathcal{C} and the matrix from \mathcal{C} to \mathcal{B}. Be sure to indicate which is which (4 points).

The change of coordinates matrices from \mathcal{B} and \mathcal{C} to the standard basis are, respectively,

$$
P_{\mathcal{B}}=\left[\begin{array}{ll}
7 & -3 \\
5 & -1
\end{array}\right] \quad P_{\mathcal{C}}=\left[\begin{array}{cc}
1 & -2 \\
-5 & 2
\end{array}\right]
$$

Their determinates are 8 and -8 respectively. We can find their inverses using the adjugate formula:

$$
P_{\mathcal{B}}^{-1}=\frac{1}{8}\left[\begin{array}{ll}
-1 & 3 \\
-5 & 7
\end{array}\right] \quad P_{\mathcal{C}}^{-1}=\frac{1}{-8}\left[\begin{array}{ll}
2 & 2 \\
5 & 1
\end{array}\right]=\frac{1}{8}\left[\begin{array}{ll}
-2 & -2 \\
-5 & -1
\end{array}\right]
$$

The change of coordinates matrix from \mathcal{B} to \mathcal{C} can be obtained by first changing from \mathcal{B} to the standard basis and then to \mathcal{C} :

$$
P_{\mathcal{C}}^{-1} P_{\mathcal{B}}=\frac{1}{8}\left[\begin{array}{ll}
-2 & -2 \\
-5 & -1
\end{array}\right]\left[\begin{array}{ll}
7 & -3 \\
5 & -1
\end{array}\right]=\frac{1}{8}\left[\begin{array}{cc}
-24 & 8 \\
-40 & 16
\end{array}\right]=\left[\begin{array}{ll}
-3 & 1 \\
-5 & 2
\end{array}\right] .
$$

Similarly, the change of coordinates matrix from \mathcal{C} to \mathcal{B} is

$$
P_{\mathcal{B}}^{-1} P_{\mathcal{C}}=\frac{1}{8}\left[\begin{array}{ll}
-1 & 3 \\
-5 & 7
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-5 & 2
\end{array}\right]=\frac{1}{8}\left[\begin{array}{cc}
-16 & 8 \\
-40 & 24
\end{array}\right]=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 3
\end{array}\right]
$$

Notice that the two change of coordinates matrices are inverses of each other.

