1 Use Cramer's rule to find the value of x_{3} in the solution to the equation:

$$
\left[\begin{array}{ccc}
3 & -2 & -5 \\
-1 & -1 & 3 \\
6 & 1 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

Call the matrix on the left hand side A. We compute the determinant of A by expanding by minors along the first column:

$$
\begin{aligned}
A & =3\left|\begin{array}{cc}
-1 & 3 \\
1 & -6
\end{array}\right|+1\left|\begin{array}{cc}
-2 & -5 \\
1 & -6
\end{array}\right|+6\left|\begin{array}{cc}
-2 & -5 \\
-1 & 3
\end{array}\right| \\
& =3(6-3)+(12+5)+6(-6-5) \\
& =9+17-66=-40
\end{aligned}
$$

Then we substitue the right hand side into the third column of A and compute its determinant, again by expanding along the first column:

$$
\begin{aligned}
\left|\begin{array}{ccc}
3 & -2 & 2 \\
-1 & -1 & -1 \\
6 & 1 & 3
\end{array}\right| & =3\left|\begin{array}{cc}
-1 & -1 \\
1 & 3
\end{array}\right|+1\left|\begin{array}{cc}
-2 & 2 \\
1 & 3
\end{array}\right|+6\left|\begin{array}{cc}
-2 & 2 \\
-1 & -1
\end{array}\right| \\
& =3(-3+1)+(-6-2)+6(2+2) \\
& =-6-8+24=10
\end{aligned}
$$

Thus, the value of x_{3} is $10 /(-40)=-1 / 4$. (In fact, the solution is $(1 / 4,0,-1 / 4)$.)

2 Find the inverse of the matrix:

$$
A=\left[\begin{array}{ccc}
2 & 3 & 3 \\
1 & 2 & 2 \\
3 & 0 & -1
\end{array}\right]
$$

We put the identity matrix to the right of A and row reduce:

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
2 & 3 & 3 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
3 & 0 & -1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
2 & 3 & 3 & 1 & 0 & 0 \\
3 & 0 & -1 & 0 & 0 & 1
\end{array}\right] \sim} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 & -2 & 0 \\
0 & -6 & -7 & 0 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 & 2 & 0 \\
0 & -6 & -7 & 0 & -3 & 1
\end{array}\right] \sim} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & -3 & 0 \\
0 & 1 & 1 & -1 & 2 & 0 \\
0 & 0 & -1 & -6 & 9 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & -3 & 0 \\
0 & 1 & 0 & -7 & 11 & 1 \\
0 & 0 & -1 & -6 & 9 & 1
\end{array}\right] \sim} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & -3 & 0 \\
0 & 1 & 0 & -7 & 11 & 1 \\
0 & 0 & 1 & 6 & -9 & -1
\end{array}\right]}
\end{aligned}
$$

Therefore, the inverse of A is:

$$
\left[\begin{array}{ccc}
2 & -3 & 0 \\
-7 & 11 & 1 \\
6 & -9 & -1
\end{array}\right]
$$

