1 Here is a matrix and its echelon form:

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
1 & -1 & 6 & 5 & -3 \\
-2 & 0 & -6 & 1 & -2 \\
4 & 1 & 9 & 1 & -9
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$ and state the dimensions of these subspaces. (6 points)

A basis for $\operatorname{Col}(A)$ is those columns which have pivots in the echelon form of A, which are the first, second and fourth columns:

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
5 \\
1 \\
1
\end{array}\right]\right\}
$$

Since there are 3 vectors in the basis, the subspace is 3-dimensional.
The dimension of $\operatorname{Nul}(A)$ is 2 , because that is the number of free variables, but to find a basis for $\operatorname{Nul}(A)$, we need to find the reduced echelon form:

$$
\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -2 & 9 & 0 & 14 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 & 0 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From this, we read off the basis for $\operatorname{Nul}(A)$:

$$
\left\{\left[\begin{array}{l}
0 \\
7 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-3 \\
3 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

(This is a reverse Schubert basis, but the problem did not ask about that.)
2 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which takes a point, rotates it counter-clockwise 45 degrees, and then reflects it across the x_{1}-axis. Find a matrix for T. (4 points)

The matrix for a counter-clockwise rotation by θ degrees is:

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

The matrix for T is the product of the matrix for the reflection times the matrix for the rotation:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]
$$

