Math 54 quiz solutions

September 16, 2009

1 Here is a matrix and its echelon form:

	1	-2	9	5	4		[1	-2	9	5	4
A =	1	-1	6	5	-3	~	0	1	-3	0	-7
	-2	0	-6	1	-2		0	0	0	1	-2
	4	1	9	1	-9		0	0	0	0	0

Find bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$ and state the dimensions of these subspaces. (6 points)

A basis for $\operatorname{Col}(A)$ is those columns which have pivots in the echelon form of A, which are the first, second and fourth columns:

$$\left\{ \begin{bmatrix} 1\\1\\-2\\4 \end{bmatrix}, \begin{bmatrix} -2\\-1\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\5\\1\\1\\1 \end{bmatrix} \right\}$$

Since there are 3 vectors in the basis, the subspace is 3-dimensional.

The dimension of Nul(A) is 2, because that is the number of free variables, but to find a basis for Nul(A), we need to find the reduced echelon form:

1	-2	9	5	4		[1	-2	9	0	14		[1	0	3	0	0]
0	1	-3	0	-7	r.	0	1	-3	0	-7		0	1	-3	0	-7
0	0	0	1	-2		0	0	0	1	-2	$\sim \begin{bmatrix} 0\\0\\0 \end{bmatrix}$	0	0	0	1	-2

From this, we read off the basis for Nul(A):

$$\left\{ \begin{bmatrix} 0\\7\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} -3\\3\\1\\0\\0 \end{bmatrix} \right\}$$

(This is a reverse Schubert basis, but the problem did not ask about that.)

2 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which takes a point, rotates it counter-clockwise 45 degrees, and then reflects it across the x_1 -axis. Find a matrix for T. (4 points)

The matrix for a counter-clockwise rotation by θ degrees is:

$$\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

The matrix for T is the product of the matrix for the reflection times the matrix for the rotation:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$