1 Find the Fourier cosine series expansion of $f(x)=3+x$ defined on $0<x<\pi$ (7 points).

For $n>0$, we compute a_{n} using the formula:

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi}(3+x) \cos n x d x
$$

Use integration by parts with $u=3+x, d v=\cos n x, d u=d x, v=\frac{1}{n} \sin n x$:

$$
\begin{aligned}
& =\frac{2}{\pi}\left[\frac{3+x}{n} \sin n x\right]_{x=0}^{\pi}-\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{n} \sin n x d x \\
& =0+\frac{2}{\pi}\left[\frac{1}{n^{2}} \cos n x\right]_{x=0}^{\pi}
\end{aligned}
$$

because $\sin n \pi=\sin 0=0$ for any integer n,

$$
=\frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)
$$

This is $\frac{-4}{n^{2} \pi}$ for n odd and 0 for n even.
To compute a_{0},

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} 3+x d x=\frac{2}{\pi}\left[3 x+\frac{x^{2}}{2}\right]_{x=0}^{\pi}=\frac{2}{\pi}\left(3 \pi+\frac{\pi^{2}}{2}\right)=6+\pi
$$

Thus, the Fourier series is:

$$
\left(3+\frac{\pi}{2}\right)+\sum_{k=1}^{\infty} \frac{-4}{(2 k-1)^{2} \pi} \cos ((2 k-1) x)
$$

2 What is the value of the Fourier series from the previous problem for x in the range $-\pi<x<0$ (3 points)?

Since the cosine is an even function, a Fourier cosine series always gives an even function. Thus, for $-\pi<x<0$, the Fourier cosine series converges to $f(-x)=3-x$.

