1 Find a general solution to the system: (5 points)

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

The characteristic equation of the matrix is:

$$
\left[\begin{array}{cc}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right]=2-3 \lambda+\lambda^{2}-6=\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+1)
$$

so the eigenvalues are 4 and -1 . For $\lambda=4$,

$$
\left[\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right] \quad \text { eigenvector }\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

For $\lambda=-1$,

$$
\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right] \quad \text { eigenvector }\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Thus, the solution to the homogeneous equation is

$$
\mathbf{x}_{h}(t)=\left[\begin{array}{cc}
2 e^{4 t} & e^{-t} \\
3 e^{4 t} & -e^{-t}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]
$$

for any real numbers C_{1} and C_{2}.
For the inhomogeneous equation, because the inhomogeneity is constant, we guess $\mathbf{x}_{p}(t)=\mathbf{a}$ for some vector \mathbf{a}. We plug this guess into the differential equation:

$$
\begin{aligned}
\mathbf{0} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{a}+\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \\
{\left[\begin{array}{c}
-1 \\
1
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{a} .
\end{aligned}
$$

To solve this linear system of equations, we form the augmented matrix and use Gaussian elimination:

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -4 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

Thus, $\mathbf{a}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. The general solution is

$$
\mathbf{x}(t)=\left[\begin{array}{cc}
2 e^{4 t} & e^{-t} \\
3 e^{4 t} & -e^{-t}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

2 Find the Fourier series for the function on $-\pi<x<\pi$ defined by: (5 points)

$$
f(x)= \begin{cases}-1 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

Note that f is an odd function. Thus,

$$
\frac{1}{\pi} \int_{-1}^{1} f(x) \cos (n x) d x=0
$$

for all n. Using the fact that the integral of an even function from -1 to 1 is twice the integral from 0 to 1 , the coefficient of $\sin (n x)$ is

$$
\begin{aligned}
\frac{1}{\pi} \int_{-1}^{1} f(x) \sin (n x) d x & =\frac{2}{\pi} \int_{0}^{1} \sin (n x) d x \\
& =\left[\frac{-2}{n \pi} \cos (n x)\right]_{0}^{1} \\
& =\frac{-2}{n \pi}\left((-1)^{n}-1\right)=\frac{2\left(1-(-1)^{n}\right)}{n \pi}
\end{aligned}
$$

which is $4 / n$ when n is odd and 0 when n is even. We can the Fourier series as

$$
\sum_{n=1}^{\infty} \frac{2\left(1-(-1)^{n}\right)}{n \pi} \sin (n x)
$$

However, it is somewhat nicer to just sum over n odd by letting $n=2 m-1$ and then writing the Fourier series as,

$$
\sum_{m=1}^{\infty} \frac{4}{(2 m-1) \pi} \sin ((2 m-1) x)
$$

