MATH 380A/500A, PROBLEM SET 7

These problems are due at the beginning of class on Monday, October 28.

- (1) Eisenbud, exercise 7.2.
- (2) Suppose R is complete with respect to an ideal I. Show that I is contained in the Jacobson radical of R.
- (3) Eisenbud, exercise 7.11.
- (4) Eisenbud, exercise 7.12.
- (5) Eisenbud, exercise 7.16. For the last sentence, it's important that you not just find the coefficient field of \hat{R} , but describe it as a subring of \hat{R} .
- (6) Eisenbud, exercise 7.27. Please note hint in back of the book.
- (7) Let $\alpha_n: \mathbb{Z}/p \to \mathbb{Z}/p^n$ be the injective morphism of \mathbb{Z} -modules defined by $\alpha_n(1) = p^{n-1}$. Let $\alpha: A \to B$ be the direct sum of the α_n for $n \ge 1$, i.e. $A = \bigoplus_{n=1}^{\infty} \mathbb{Z}/p$ and $B = \bigoplus_{n=1}^{\infty} \mathbb{Z}/p^n$ and α is defined component-wise. Prove that the *p*-adic completion of *A* is *A*, but that the completion of *A* with respect to the topology induced by the *p*-adic topology on *B* is infinite direct product $\prod_{n=1}^{\infty} \mathbb{Z}/p$.
- (8) Eisenbud, exercise 9.6.