MATH 380A/500A, PROBLEM SET 11

These problems are due during the week of December 2-6, at a time to be chosen by you.
(1) Eisenbud, exercise 13.10 .
(2) Unlike the case of the Krull-Akizuki theorem, it is not true that an arbitrary ring between an affine domain and its field of fractions is Noetherian. For example, take $R=k[x, y]$ for k a field, and K the fraction field of R. Let T be the subring of K generated over R and the monomials

$$
\left\{x^{a} y^{b} \mid a \geq 0, \pi b+a \geq 0\right\} .
$$

Here, $\pi \approx 3.14159 \ldots$ is the ratio of the circumference to the diameter of a circle. Show that T is not Noetherian.
(3) Eisenbud, exercise 13.2.

If $b \in R$, then the elementary symmetric functions in the conjugates of b are the coefficients of the polynomial $\prod_{\sigma \in G}(x-\sigma b)$. You can take this as the definition of the elementary symmetric functions.
(4) Eisenbud, exercise 13.3.
(5) Eisenbud, exercise 15.4.
(6) Eisenbud, exercise 15.5.

