MATH 380A/500A, PROBLEM SET 1

The following problems are due at the beginning of class on Sep. 9, 2013:

- (1) Eisenbud, exercise 2.1.
- (2) Eisenbud, exercise 2.3.
- (3) Eisenbud, exercise 2.4.
- (4) Eisenbud, exercise 2.6.
- (5) The usual Chinese remainder theorem states if m_1, \ldots, m_n are pairwise coprime integers and a_1, \ldots, a_n are arbitrary, then there exists an integer b such that $b \equiv a_i \pmod{m_i}$ for all i. Prove this version of the Chinese remainder theorem using the previous problem.
- (6) Eisenbud, exercise 2.10, including the last sentence.
- (7) Eisenbud, exercise 2.26. Nontrivial idempotents are defined in exercise 2.25.
- (8) Let f be an element of a ring R. Let $U = \{1, f, f^2, \dots\}$ be the set of all powers of f. Prove that $R[U^{-1}]$ is isomorphic to $R[x]/\langle fx 1 \rangle$. We will write $R[f^{-1}]$ for this localization.
- (9) Let I be a partially ordered set and assume that for each i and j in I, there exists a $k \in I$ such that $i \leq k$ and $j \leq k$. Suppose that for each $i \in I$, we have a ring R_i and for each i < j, we have a ring homomorphism $\phi_{ij} \colon R_i \to R_j$ such that for i < j < k, $\phi_{ik} = \phi_{jk} \circ \phi_{ij}$. For i = j, we adopt the convention that $\phi_{ii} \colon R_i \to R_i$ is the identity. We call this set-up a filtered system of rings.

We define the *colimit* $\varinjlim R_i$ (which really depends not just on the rings R_i but also on the homomorphisms ϕ_{ij}) to be disjoint union of the R_i modulo the equivalence relation that $r_i \in R_i$ and $r_j \in R_j$ are equivalent if there exists $k \geq i, j$ such that $\phi_{ik}(r_i) = \phi_{jk}(r_j)$. Describe the natural addition and multiplication operations on these equivalence classes and verify that it makes the colimit into a ring.

(The assumption on the indexing set makes this a *filtered colimit*. Colimits can also be constructed without the filtered hypothesis. See Appendix 6 for details.)

- (10) With the same set-up as in the previous problem, further suppose that that the index set I has a greatest element m (i.e. $i \leq m$ for all $i \in I$). Show that $\lim R_i \cong R_m$.
- (11) Let U be a multiplicative set. We let I consist of the elements of U modulo multiplication by units, and we order it by divisibility, so that if f and g are elements of U, then $f \leq g$ if there exists $h \in R$ such that g = fh. We set $R_f = R[f^{-1}]$ as in problem 8 and $\phi_{fg} \colon R[f^{-1}] \to R[g^{-1}]$ by $\phi_{fg}(r/f^n) = rh^n/g^n$. Show that we have constructed a well-defined filtered system of rings. Show that the colimit $\lim_{\longrightarrow} R_f$ is isomorphic to $R[U^{-1}]$.