MATH 380A/500A, FINAL EXAM

Rings are not necessarily assumed to be Noetherian unless stated.

PROBLEM 1

A ring is called semilocal if it has finitely many mazimal ideals. Let R
be a semilocal ring and let M and N be finitely presented R-modules.
Show that if Mp = Np for all mazimal ideals P, then M = N (20
points). (See Eisenbud, Exercise 4.13 and its hint.)

We let Py, ..., P, be the maximal ideals of R. By assumption, we
have an isomorphism Mp, = Np, and then by Proposition 2.10, we
can identify our isomorphism with an element of Hom(M, N) ® Rp.
By clearing denominators, we get a morphism ¢;: M — N such that
(¢;)p,;: M — N is an isomorphism.

Since they are each maximal, the P; are pairwise disjoint and prime,
and so by Prime Avoidance (Lemma 3.3), we may choose an element
a; € P; such that a; ¢ P; for all j # i. Now set b, = H#i a; and then
we have that b; € P, but b; € P; for all j # i. We set 9 to be the
homomorphism ) | ; bj¢;, and we will show that 1) is an isomorphism.

By Corollary 2.9, it suffices to show that for each maximal P;, the
localization vp, is an isomorphism and by Corollary 4.4, it suffices
to show that ¥ p, is a surjection. We consider the composition of 1p,
with the quotient map m;: Np, = Np,/P,Np,. Since a; € P, for j # i,
m; 0 p, = m; o (¢;)p, is surjective. Therefore, by Nakayama’s Lemma,
Pp, 1s surjective.

Finally, since (¢;)p, is an isomorphism (@-);,il o 1p, is also surjective,
but then by Corollary 4.4, it must be an isomorphism. Thus, ¥p, is also
an isomorphism for each P; and so ¢ is an isomorphism.

PROBLEM 2

Let R be a complete discrete valuation ring with fraction field K and
let L be an algebraic extension of K. If S is the integral closure of R
in L, prove that S is a valuation ring (20 points). (Hint: you may
find Eisenbud, Corollary 7.6 of use.) Second, if, additionally, L is the
algebraic closure of K, prove that the valuation group of S is isomorphic
to Q (10 points).
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Let x be an element of L and we will prove that either z or 7! is

in S. Since L is an algebraic extension of K, the field L’ generated by x
is finite. Let S’ be the integral closure of R in L', and we now verify
that S’ is a discrete valuation ring. By the Krull-Akizuki theorem, S’
is Noetherian. By Eisenbud, Proposition 9.2, S” is 1-dimensional. In
order to show that S’ is a DVR, it only remains to prove that it is local,
since S’ is integrally closed by construction.

Let m C S’ be a maximal ideal contracting to the maximal ideal of R,
which exists by the Lying Over theorem. Let s1, ..., s, be the generators
of m and let r be an element of S’ not in m. Then consider the subring
of S" generated by the elements sq,...,s,,r and by R. We denote
this by S”, and it is finite as an R-module. Therefore, by Eisenbud,
Corollary 7.6, S” is a product of local domains. But S” ¢ S C L/, and
L' is a field, so S” is a local domain. By the Going Up theorem, mnN S”
is a maximal ideal. Thus, r is a unit. Therefore, m must be the unique
maximal ideal of S’, so it is local.

Therefore, S’ is a DVR, and so either x or 7! is in S’, and thus one
of them is in .S, which is what we wanted to show.

Now, suppose that L is the algebraic closure of K, and we claim
that the valuation group of S is isomorphic to Q. First of all, we recall
that the valuation group of a valuation ring R can be written as the
quotient of multiplicative groups K*/R*, where K is the fraction field
of R. From this it is immediate, that any inclusion of valuation rings
R C S induces a homomorphism of valuation groups. Furthermore, if
R C S is an integral extension, then a non-unit r € R is contained in
some maximal ideal of S by the Lying Over theorem, and thus r is not
a unit in S. Therefore, for integral extensions of valuation rings, the
homomorphism of valuation groups is injective.

If we let S” be the integral closure in a finite algebraic extension as
above, then valuation group of S’ is isomorphic to Z, since S’ is a DVR.
By the previous paragraph, the valuation group of R is the subgroup dZ
for some positive integer d. We rescale so that the inclusion is identified
with Z C CllZ. Thus, we can identify the valuation of any element of S
with an element of QQ, which is our desired isomorphism. To show that
this identification is surjective, we let 7 be a uniformizer of R and then
consider L defined by adjoining 7'/, which will have valuation 1/d.

PROBLEM 3

Let R be a Dedekind domain and M an R-module. Prove that M is flat
if and only if M has no associated primes other than the zero ideal (20
points).
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Suppose that m is an associated prime of M, say because m = ann(m)
for m € M. Then any r € m is a zerodivisor and M is not flat by
Corollary 6.3.

Conversely, suppose that (0) is the only associated prime of M and we
want to show that M is flat. Let N’ — N be the inclusion of R-modules
and consider the tensor product M ® N’ — M ® N. By Corollary
2.9, it suffices to check injectivity locally at the maximal ideals of m.
However, for any maximal ideal m, the localization R, is a DVR and
thus a principal ideal domain, and since associated primes localize, My,
has no non-zero associated primes. Thus, M, is torsion-free, so M, is
flat by Corollary 6.3. Thus, My, ® N;, — My ® Ny, is injective and M
is flat.

PROBLEM 4

Let k be a field and R = k[z,y]/(x* —x,zy). Find a k-subalgebra S C R
such that S = k[z] and R is a finite S-module, as guaranteed by Noether
normalization (10 points). Second, prove that there can exist no such S
where R is flat as an S-module (20 points).

We take S = k[y] and then R is a finite S-module. In order to show
that S is a subring of R, i.e. that there are no relations imposed on y,
we show that 22 — x, xy is a Grobner basis for the lexicographic order
with x > y. There is a single S-polynomial to compute:

y(x® — z) — z(zy) = —ay,

which immediately reduces to zero using the second polynomial. There-
fore, the kernel of k[y] — R is zero, so we have a subring.

To see that R is a finite S-module, we can use the relation 2% — x
together with the elements 1 and x to generate R.

Because R has dimension 1, any S such that R is a finite S-algebra
must be 1-dimensional. Now suppose we have a subalgebra S = k[z]
of R. If we consider = € R, then the annihilator of z is m = (x — 1, y).
Thus, m is an associated prime of R and since R/m is isomorphic to a
field k£, m has dimension 0. Therefore, by Proposition 9.2, mN .S is also
zero-dimensional, so m NS is a non-zero ideal. Therefore, anng(f) is
non-zero, so R is not a flat S-module by Corollary 6.3.

(If R is any affine ring, then there exists a flat Noether normalization
if and only if all Noether normalizations are flat. The existence of a
flat Noether normalization is equivalent to being both equidimensional
and Cohen-Macaulay. The necessity of R being equidimensional was
illustrated by this exercise. Cohen-Macaulay is a more subtle condition
which is discussed in the later chapters of Eisenbud.)
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PROBLEM 5

Let k be a field and R = klzy,..., x|, which, as usual, is graded by
degree. If I is a homogeneous ideal in R and > is any term order, show
that I has a homogeneous Grobner basis (20 points). Give an example
of a homogeneous ideal which has a non-homogeneous Gréobner basis

(10 points).

First proof: Let x be a generator of in- (1), so that % = in. (f) for
some f € I. We can write f = f; + -+ f,, where each of the f; are
homogeneous, and since I is homogeneous, the f; are also in 7. Then
we take whichever f; contains x® as one of the elements of our Grobner
basis, and this is homogeneous and clearly in. (f;) = z®. If we do this
for all generators of in- (7), we've constructed a homogeneous Grébner
basis.

Second proof: We start with a homogeneous generating set for I and
we run Buchberger’s algorithm to construct a Grobner basis. At each
step where we compute an S-polynomial % f —2%g, the exponents a and b
are chosen so that the leading terms of 2 f and ’g are the same, so in
particular they have the same degree. Thus, the S-polynomial is also
homogeneous. Similarly, each reduction step preserves the homogeneity,
so we will produce a homogeneous Grobner basis.

For the last sentence, we can take the ideal I = (z1,x5). Since [ is
already a monomial ideal, in- (/) = I. However, we can also choose a
non-homogeneous Grobner basis such as x; — 22, x9, with a term order
such that z; > 22, such as the lexicographic order.



