
MATH 380A/500A, FINAL EXAM

Rings are not necessarily assumed to be Noetherian unless stated.

Problem 1

A ring is called semilocal if it has finitely many maximal ideals. Let R
be a semilocal ring and let M and N be finitely presented R-modules.
Show that if MP

∼= NP for all maximal ideals P , then M ∼= N (20
points). (See Eisenbud, Exercise 4.13 and its hint.)

We let P1, . . . , Pn be the maximal ideals of R. By assumption, we
have an isomorphism MPi

∼= NPi
, and then by Proposition 2.10, we

can identify our isomorphism with an element of Hom(M,N) ⊗ RP .
By clearing denominators, we get a morphism φi : M → N such that
(φi)Pi

: M → N is an isomorphism.
Since they are each maximal, the Pi are pairwise disjoint and prime,

and so by Prime Avoidance (Lemma 3.3), we may choose an element
ai ∈ Pi such that ai 6∈ Pj for all j 6= i. Now set bi =

∏
j 6=i aj and then

we have that bi 6∈ Pi, but bi ∈ Pj for all j 6= i. We set ψ to be the
homomorphism

∑
j bjφj, and we will show that ψ is an isomorphism.

By Corollary 2.9, it suffices to show that for each maximal Pi, the
localization ψPi

is an isomorphism and by Corollary 4.4, it suffices
to show that ψPi

is a surjection. We consider the composition of ψPi

with the quotient map πi : NPi
→ NPi

/PiNPi
. Since aj ∈ Pi for j 6= i,

πi ◦ ψPi
= πi ◦ (φi)Pi

is surjective. Therefore, by Nakayama’s Lemma,
ψPi

is surjective.
Finally, since (φi)Pi

is an isomorphism (φi)
−1
Pi
◦ ψPi

is also surjective,
but then by Corollary 4.4, it must be an isomorphism. Thus, ψPi

is also
an isomorphism for each Pi and so ψ is an isomorphism.

Problem 2

Let R be a complete discrete valuation ring with fraction field K and
let L be an algebraic extension of K. If S is the integral closure of R
in L, prove that S is a valuation ring (20 points). (Hint: you may
find Eisenbud, Corollary 7.6 of use.) Second, if, additionally, L is the
algebraic closure of K, prove that the valuation group of S is isomorphic
to Q (10 points).
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Let x be an element of L and we will prove that either x or x−1 is
in S. Since L is an algebraic extension of K, the field L′ generated by x
is finite. Let S ′ be the integral closure of R in L′, and we now verify
that S ′ is a discrete valuation ring. By the Krull-Akizuki theorem, S ′

is Noetherian. By Eisenbud, Proposition 9.2, S ′ is 1-dimensional. In
order to show that S ′ is a DVR, it only remains to prove that it is local,
since S ′ is integrally closed by construction.

Let m ⊂ S ′ be a maximal ideal contracting to the maximal ideal of R,
which exists by the Lying Over theorem. Let s1, . . . , sn be the generators
of m and let r be an element of S ′ not in m. Then consider the subring
of S ′ generated by the elements s1, . . . , sn, r and by R. We denote
this by S ′′, and it is finite as an R-module. Therefore, by Eisenbud,
Corollary 7.6, S ′′ is a product of local domains. But S ′′ ⊂ S ⊂ L′, and
L′ is a field, so S ′′ is a local domain. By the Going Up theorem, m∩ S ′′
is a maximal ideal. Thus, r is a unit. Therefore, m must be the unique
maximal ideal of S ′, so it is local.

Therefore, S ′ is a DVR, and so either x or x−1 is in S ′, and thus one
of them is in S, which is what we wanted to show.

Now, suppose that L is the algebraic closure of K, and we claim
that the valuation group of S is isomorphic to Q. First of all, we recall
that the valuation group of a valuation ring R can be written as the
quotient of multiplicative groups K∗/R∗, where K is the fraction field
of R. From this it is immediate, that any inclusion of valuation rings
R ⊂ S induces a homomorphism of valuation groups. Furthermore, if
R ⊂ S is an integral extension, then a non-unit r ∈ R is contained in
some maximal ideal of S by the Lying Over theorem, and thus r is not
a unit in S. Therefore, for integral extensions of valuation rings, the
homomorphism of valuation groups is injective.

If we let S ′ be the integral closure in a finite algebraic extension as
above, then valuation group of S ′ is isomorphic to Z, since S ′ is a DVR.
By the previous paragraph, the valuation group of R is the subgroup dZ
for some positive integer d. We rescale so that the inclusion is identified
with Z ⊂ 1

d
Z. Thus, we can identify the valuation of any element of S

with an element of Q, which is our desired isomorphism. To show that
this identification is surjective, we let π be a uniformizer of R and then
consider L defined by adjoining π1/d, which will have valuation 1/d.

Problem 3

Let R be a Dedekind domain and M an R-module. Prove that M is flat
if and only if M has no associated primes other than the zero ideal (20
points).
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Suppose that m is an associated prime of M , say because m = ann(m)
for m ∈ M . Then any r ∈ m is a zerodivisor and M is not flat by
Corollary 6.3.

Conversely, suppose that (0) is the only associated prime of M and we
want to show that M is flat. Let N ′ → N be the inclusion of R-modules
and consider the tensor product M ⊗ N ′ → M ⊗ N . By Corollary
2.9, it suffices to check injectivity locally at the maximal ideals of m.
However, for any maximal ideal m, the localization Rm is a DVR and
thus a principal ideal domain, and since associated primes localize, Mm

has no non-zero associated primes. Thus, Mm is torsion-free, so Mm is
flat by Corollary 6.3. Thus, Mm ⊗N ′m →Mm ⊗Nm is injective and M
is flat.

Problem 4

Let k be a field and R = k[x, y]/〈x2−x, xy〉. Find a k-subalgebra S ⊂ R
such that S ∼= k[z] and R is a finite S-module, as guaranteed by Noether
normalization (10 points). Second, prove that there can exist no such S
where R is flat as an S-module (20 points).

We take S = k[y] and then R is a finite S-module. In order to show
that S is a subring of R, i.e. that there are no relations imposed on y,
we show that x2 − x, xy is a Gröbner basis for the lexicographic order
with x > y. There is a single S-polynomial to compute:

y(x2 − x)− x(xy) = −xy,
which immediately reduces to zero using the second polynomial. There-
fore, the kernel of k[y]→ R is zero, so we have a subring.

To see that R is a finite S-module, we can use the relation x2 − x
together with the elements 1 and x to generate R.

Because R has dimension 1, any S such that R is a finite S-algebra
must be 1-dimensional. Now suppose we have a subalgebra S ∼= k[z]
of R. If we consider x ∈ R, then the annihilator of x is m = 〈x− 1, y〉.
Thus, m is an associated prime of R and since R/m is isomorphic to a
field k, m has dimension 0. Therefore, by Proposition 9.2, m ∩ S is also
zero-dimensional, so m ∩ S is a non-zero ideal. Therefore, annS(f) is
non-zero, so R is not a flat S-module by Corollary 6.3.

(If R is any affine ring, then there exists a flat Noether normalization
if and only if all Noether normalizations are flat. The existence of a
flat Noether normalization is equivalent to being both equidimensional
and Cohen-Macaulay. The necessity of R being equidimensional was
illustrated by this exercise. Cohen-Macaulay is a more subtle condition
which is discussed in the later chapters of Eisenbud.)
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Problem 5

Let k be a field and R = k[x1, . . . , xr], which, as usual, is graded by
degree. If I is a homogeneous ideal in R and > is any term order, show
that I has a homogeneous Gröbner basis (20 points). Give an example
of a homogeneous ideal which has a non-homogeneous Gröbner basis
(10 points).

First proof: Let xa be a generator of in>(I), so that xa = in>(f) for
some f ∈ I. We can write f = f1 + · · ·+ fn, where each of the fi are
homogeneous, and since I is homogeneous, the fi are also in i. Then
we take whichever fi contains xa as one of the elements of our Gröbner
basis, and this is homogeneous and clearly in>(fi) = xa. If we do this
for all generators of in>(I), we’ve constructed a homogeneous Gröbner
basis.

Second proof: We start with a homogeneous generating set for I and
we run Buchberger’s algorithm to construct a Gröbner basis. At each
step where we compute an S-polynomial xaf−xbg, the exponents a and b
are chosen so that the leading terms of xaf and xbg are the same, so in
particular they have the same degree. Thus, the S-polynomial is also
homogeneous. Similarly, each reduction step preserves the homogeneity,
so we will produce a homogeneous Gröbner basis.

For the last sentence, we can take the ideal I = 〈x1, x2〉. Since I is
already a monomial ideal, in>(I) = I. However, we can also choose a
non-homogeneous Gröbner basis such as x1 − x22, x2, with a term order
such that x1 > x22, such as the lexicographic order.


