$\begin{array}{c} \text{Math 1B Problems, volume 4} \\ \text{Dustin Cartwright}^1 \end{array}$

- 1. Solve $y'' 4y = e^x \cos x$ using the method of undetermined coefficients with the initial conditions y(0) = 1 and y'(0) = 2.
- 2. Solve $y'' + 3y' + 2y = \sin(e^x)$.
- 3. Solve $y'' 2y' + y = \frac{e^x}{1 + x^2}$.
- 4. Find the general solution to $y'' 8y' + 16y = e^{4x}$ using the method of undetermined coefficients and using variation of parameters.
- 5. Solve $y'' + y = 3\sin 2x + x\cos 2x$.
- 6. Use the following recursion formulas to find explicit formulas:
 - (a) $a_{n+1} = a_n + 5$ for $n \ge 0$
 - (b) $a_{n+2} = a_n + 5$ for $n \ge 0$
 - (c) $a_{n+1} = na_n$ for $n \ge 1$
 - (d) $a_{n+1} = n^2 a_n$ for $n \ge 1$
- 7. Find an explicit formula for $a_{n+1} = \frac{k-n}{n+1}a_n$.
- 8. Solve $y' = \frac{ky}{1+x}$ using power series and explicitly. Did you get the same answer?
- 9. Find a solution to $x^2y'' + xy' + (x^2 1)y = 0$ with y(0) = 0 and $y(1) = \frac{1}{2}$. Try to simplify as much as you can.