Math 1B Problems, volume 2 Dustin Cartwright¹

1. Which of the following are *p*-series or can be treated as *p*-series? Which are geometric series? If it is a *p*-series or geometric series, say whether it converges.

(a)
$$\sum_{n=0}^{\infty} 3^{-n}$$

(b) $1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots$
(c) $\sum_{n=1}^{\infty} \frac{3\sqrt{n}}{n^3}$
(d) $32 + 16 + 8 + 4 + \dots$
(e) $\sum_{n=1}^{\infty} \frac{1}{(2n)^2}$
(f) $\sum_{n=5}^{\infty} \frac{1}{\sqrt[3]{n-3}}$
(g) $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n^2}$

- 2. Suppose $\sum_{n=1}^{\infty} a_n$ is an infinite series. Write $\{s_n\}$ for the sequence of partial sums. Which of the following are possible or impossible:

 - (a) ∑_{n=1}[∞] a_n diverges, but {s_n} and {a_n} converge.
 (b) ∑_{n=1}[∞] a_n and {s_n} diverge, but and {a_n} converges.
 (c) ∑_{n=1}[∞] a_n and {s_n} converge, but and {a_n} diverges.
 (d) ∑_{n=1}[∞] a_n, {s_n}, and {a_n} all converge.
 (e) ∑_{n=1}[∞] a_n, {s_n}, and {a_n} all diverge.
- 3. A student (probably the same one who tried to integrate $\int 1/x \, dx$ and got 0=1) tries to find the value of $\sum_{n=0}^{\infty} (-1)^n$ and, once again, gets 0=1.

$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \dots$$

= $(1 - 1) + (1 - 1) + \dots$
= 0
$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \dots$$

= $1 + (-1 + 1) + (-1 + 1) + \dots$
= 1

¹Problems borrowed from various sources, mostly the Math 1b workbook

The student thinks that this manipulation is the same as what he would do with a telescoping series. Why is this not like a telescoping series? (Hint: think about the partial sums)

- 4. Explain why it is necessary that the function f in the Integral Test by positive and decreasing. Does f have to be *always* decreasing or is it enough for f to be *eventually* decreasing?
- 5. Let c be a positive constant and find $\int_0^\infty c e^{-cx}\,dx$
- 6. Find $\int e^x \sin 2x \, dx$.

7. Find
$$\int \frac{2x^2 - 2x - 2}{x^3 + 2x^2 + 2x} dx$$
.

- 8. Find $\int \frac{x^3}{\sqrt[3]{x^2+1}} dx$.
- 9. Find $\int \sin^2 x \, dx$. Find $\int \sin^3 x \, dx$. Let *n* be a positive integer. Find $\int \sin^n x \, dx$.
- 10. Find $\int \frac{dx}{1+e^x}$.
- 11. If A is a real number, find $\int \frac{A}{x^2 + x + 1} dx$.
- 12. Find the arclength of $f(x) = |x| \cdot x$ between (-1, -1) and (1, 1).