Math 1B Problems, volume 2
 Dustin Cartwright ${ }^{1}$

1. Which of the following are p-series or can be treated as p-series? Which are geometric series? If it is a p-series or geometric series, say whether it converges.
(a) $\sum_{n=0}^{\infty} 3^{-n}$
(b) $1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\ldots$
(c) $\sum_{n=1}^{\infty} \frac{3 \sqrt{n}}{n^{3}}$
(d) $32+16+8+4+\ldots$
(e) $\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}$
(f) $\sum_{n=5}^{\infty} \frac{1}{\sqrt[3]{n-3}}$
(g) $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n^{2}}$
2. Suppose $\sum_{n=1}^{\infty} a_{n}$ is an infinite series. Write $\left\{s_{n}\right\}$ for the sequence of partial sums. Which of the following are possible or impossible:
(a) $\sum_{n=1}^{\infty} a_{n}$ diverges, but $\left\{s_{n}\right\}$ and $\left\{a_{n}\right\}$ converge.
(b) $\sum_{n=1}^{\infty} a_{n}$ and $\left\{s_{n}\right\}$ diverge, but and $\left\{a_{n}\right\}$ converges.
(c) $\sum_{n=1}^{\infty} a_{n}$ and $\left\{s_{n}\right\}$ converge, but and $\left\{a_{n}\right\}$ diverges.
(d) $\sum_{n=1}^{\infty} a_{n},\left\{s_{n}\right\}$, and $\left\{a_{n}\right\}$ all converge.
(e) $\sum_{n=1}^{\infty} a_{n},\left\{s_{n}\right\}$, and $\left\{a_{n}\right\}$ all diverge.
3. A student (probably the same one who tried to integrate $\int 1 / x d x$ and got $0=1$) tries to find the value of $\sum_{n=0}^{\infty}(-1)^{n}$ and, once again, gets $0=1$.

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n} & =1-1+1-1+\ldots \\
& =(1-1)+(1-1)+\ldots \\
& =0 \\
\sum_{n=0}^{\infty}(-1)^{n} & =1-1+1-1+\ldots \\
& =1+(-1+1)+(-1+1)+\ldots \\
& =1
\end{aligned}
$$

[^0]The student thinks that this manipulation is the same as what he would do with a telescoping series. Why is this not like a telescoping series? (Hint: think about the partial sums)
4. Explain why it is necessary that the function f in the Integral Test by positive and decreasing. Does f have to be always decreasing or is it enough for f to be eventually decreasing?
5. Let c be a positive constant and find $\int_{0}^{\infty} c e^{-c x} d x$
6. Find $\int e^{x} \sin 2 x d x$.
7. Find $\int \frac{2 x^{2}-2 x-2}{x^{3}+2 x^{2}+2 x} d x$.
8. Find $\int \frac{x^{3}}{\sqrt[3]{x^{2}+1}} d x$.
9. Find $\int \sin ^{2} x d x$. Find $\int \sin ^{3} x d x$. Let n be a positive integer. Find $\int \sin ^{n} x d x$.
10. Find $\int \frac{d x}{1+e^{x}}$.
11. If A is a real number, find $\int \frac{A}{x^{2}+x+1} d x$.
12. Find the arclength of $f(x)=|x| \cdot x$ between $(-1,-1)$ and $(1,1)$.

[^0]: ${ }^{1}$ Problems borrowed from various sources, mostly the Math 1 b workbook

