Math 1B Problems
Dustin Cartwright ${ }^{1}$

1. If f is a continuous function on $[a, b]$ and

$$
g(x)=\int_{x}^{b} f(t) d t
$$

What is $g^{\prime}(x)$?
2. Find a function f and a number a such that

$$
4+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}
$$

for all $x>0$.
3. Find the value of

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{4}}
$$

(Hint: The sum is actually a Riemann sum for a function defined on $[0,1]$).
4. Prove that

$$
\int_{-1}^{1} \sin \left(x^{3}\right)+\cos \left(x^{3}\right) d x \leq 2
$$

Can you find a lower bound for $\int_{-1}^{1} \sin \left(x^{3}\right)+\cos \left(x^{3}\right) d x$?
5. Compute the following integrals:

$$
\begin{aligned}
& \int x \cos (x) d x \\
& \int \ln x d x \\
& \int x^{2} e^{2 x} d x \\
& \int e^{x} \sin (2 x) d x \\
& \int \frac{\ln (x)}{x} d x
\end{aligned}
$$

6. What is wrong? One student uses integration by parts on the integral $\int 1 / x d x$ as below and comes to the conclusion that $0=1$. Find out which step is wrong:
(a) Let $u=1 / x, d v=d x, d u=-1 / x^{2} d x, v=x$

[^0](b) $\int(1 / x) d x=(1 / x) x-\int x\left(-1 / x^{2}\right) d x=1+\int(1 / x) d x$
(c) Subtracting $\int(1 / x) d x$ from both sides we get $1=0$.
7. Define
$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Find $\int \operatorname{erf}(x) d x$ (Hint: the answer will itself involve $\operatorname{erf}(x)$).
8. (a) Prove the reduction formula

$$
\int(\ln (x))^{n} d x=x(\ln (x))^{n}-n \int(\ln x)^{n-1} d x
$$

(b) Evaluate $\int(\ln x)^{3} d x$.
9. What is the structure of the partial fractions decomposition for each of the following integrals? Don't bother finding the actual decomposition; leave the coefficients undermined. For example:

$$
\int \frac{2}{1-x^{2}} d x=\int\left(\frac{A}{1-x}+\frac{B}{1+x}\right) d x
$$

(a) $\int \frac{x^{5}}{\left(x^{2}-4\right)\left(x^{2}+3\right)^{2}} d x$
(b) $\int \frac{1}{x^{3}+2 x^{2}+4 x+8} d x$
10. Evaluate $\int \frac{3 e^{2 t}}{e^{2 t}-e^{t}-6} d t$.
11. Find at least three ways to solve $\int \sin x \cos x d x$. Are the answers the same? Why or why not?
12. Find a substitution to turn $\int \frac{d x}{\sqrt[3]{x}+\sqrt[4]{x}}$ into a rational function.
13. Solve $\int \frac{d x}{\sqrt{1+e^{x}}}$ (Hint: use a substitution to get a rational function).
14. Evaluate $\int \frac{3 e^{2 t}}{e^{2 t}-e^{t}-6} d t$.
15. Find at least three ways to solve $\int \sin x \cos x d x$. Are the answers the same?
16. Find a substitution to turn $\int \frac{d x}{\sqrt[3]{x}+\sqrt[4]{x}}$ into a rational function.
17. Turn $\int \frac{d x}{\sec x+\csc x}$ into an integral of a rational function.
18. If $y=f(x)$ is a function and $x=g(y)$ is its inverse, then there are two possible formulas for finding the arc length between $(a, f(a))$ and $(b, f(b))$:

$$
\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{f(a)}^{f(b)} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Why do these equations give the same answer? Try to explain both using pictures and using a substitution.
19. For what values of p is $\int_{0}^{1} x^{p} d x$ convergent? How about $\int_{1}^{\infty} x^{p} d x$? How about $\int_{0}^{\infty} x^{p} d x$?
20. Sketch the graph of $y=x \sin \left(\frac{1}{x}\right)$ for $0<x \leq 1$. Is the arclength of this graph finite or infinite?

[^0]: ${ }^{1}$ Problems borrowed from various sources, mostly the Math 1 b workbook

