1 Find the power series for $\frac{1}{(x+2)^{2}}$ (2 points) and simplify it to the point that it doesn't use $\binom{k}{n}$, factorials (!), or products of the form $1 \cdot 2 \cdots n$ (3 points).

We have to use a little bit of algebra to get this into the form $(1+x)^{k}$, and then use the binomial expansion:

$$
\begin{aligned}
\frac{1}{(x+2)^{2}} & =\frac{1}{4(x / 2+1)^{2}} \\
& =\frac{1}{4} \sum_{n=0}^{\infty}\binom{-2}{n}\left(\frac{x}{2}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{4} \frac{(-2)(-3) \cdots(-2-n+1)}{1 \cdot 2 \cdots n} \frac{1}{2^{n}} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{2^{n+2}}(-1)^{n} \frac{2 \cdot 3 \cdots(n+1)}{1 \cdot 2 \cdots n} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)}{2^{n+2}} x^{n}
\end{aligned}
$$

2 What are the first two non-zero terms of $\frac{1}{D+d}-\frac{1}{D-d}$ expanded as a power series in d / D (5 points).

Rearrange and then use the geometric series (or the binomial series):

$$
\begin{aligned}
\frac{1}{D+d}-\frac{1}{D-d} & =\frac{1}{D(1+d / D)}-\frac{1}{D(1-d / D)} \\
& =\frac{1}{D} \sum_{n=0}^{\infty}\left(\frac{-d}{D}\right)^{n}-\frac{1}{D} \sum_{n=0}^{\infty}\left(\frac{d}{D}\right)^{n} \\
& =\frac{1}{D} \sum_{n=0}^{\infty}\left((-1)^{n}-1\right)\left(\frac{d}{D}\right)^{n} \\
& =-\frac{2}{D} \sum_{n=0}^{\infty}\left(\frac{d}{D}\right)^{2 n+1}
\end{aligned}
$$

Because $(-1)^{n}-1$ is just 0 when n is even and -2 when n is odd. Thus, we only need to add up the even terms. The first two non-zero terms are:

$$
-\frac{2 d}{D^{2}}-\frac{2 d^{3}}{D^{4}}+\cdots
$$

It is also possible to find the least common denominator and then use the binomial series.

3 Check that the family $y=\frac{\sqrt{2}}{x+C}$ satisfies the differential equation $y^{\prime \prime}=y^{3}$ (5 points).

Using the power rule, the derivatives of y are:

$$
\begin{aligned}
y^{\prime} & =\frac{-\sqrt{2}}{(x+C)^{2}} \\
y^{\prime \prime} & =\frac{2 \sqrt{2}}{(x+C)^{3}}
\end{aligned}
$$

On the other hand y^{3} is:

$$
\frac{(\sqrt{2})^{3}}{(x+C)^{3}}=\frac{2 \sqrt{2}}{(x+C)^{3}}
$$

so the differential equation holds.

