1 Find a power series representation for $\frac{1}{1+x^{2}}$ around $x=0$. (Hint: Use a power series you already know) (5 points)

This is similar to the expression for the geometric series, so

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

2 Show that

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}
$$

is a solution to the differential equation $f(x)+f^{\prime}(x)=0$ (5 points)
Taking the derivative term by term,

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} n x^{n-1}}{n!} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n-1}}{(n-1)!}
\end{aligned}
$$

because the $n=0$ term is just 0

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{n}}{n!}
$$

Then,

$$
\begin{aligned}
f(x)+f^{\prime}(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{\left((-1)^{n}-(-1)^{n}\right) x^{n}}{n!}=0
\end{aligned}
$$

3 What is the function represented by the power series in the previous problem?

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}=e^{-x}
$$

