1 Does $\sum_{n=1}^{\infty} \frac{10^{n}}{n \cdot 3^{n+1}}$ converge or diverge? (5 points)
All the terms are positive, so we can use a limit comparison test with $b_{n}=$ $1 / n$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{10^{n} /\left(n \cdot 3^{n+1}\right)}{1 / n} & \\
& =\lim _{n \rightarrow \infty} \frac{1}{3}\left(\frac{10}{3}\right)^{n}
\end{aligned}
$$

which diverges to ∞ because $10 / 3$ is greater than 1 . The series $\sum b_{n}$ diverges because it is the harmonic series, so $\sum a_{n}$ diverges as well.

2 Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}}(x+1)^{n}$. (5 points) Find its interval of convergence. (5 points)

Use the ratio test to find the radius of convergence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} /(n+1)^{2}(x+1)^{n+1}}{(-1)^{n} / n^{2}(x+1)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{-n^{2}(x+1)}{n^{2}+2 n+1}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x+1|}{1+2 / n+1 / n^{2}} \\
& =|x+1|
\end{aligned}
$$

So, the series converges whenever $|x+1|<1$ and diverges whenever $|x+1|>1$. Thus, the radius of convergence is 1 .

The center of the power series is $x=-1$. To find the interval of convergence, we need to check for convergence on the boundaries of the radius of convergence $x=-1-1=-2$ and $x=-1+1=0$. If we plug in $x=0$, the power series becomes:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which is an alternating series and converges by the alternating series test. If we plug in $x=-2$, the power series becomes:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}}(-1)^{n}=\sum_{n=0}^{\infty} \frac{1}{n^{2}}
$$

which is a p-series with $p=2$, so it converges. Thus, the interval of convergence is $[-2,0]$.

