
Math 1B quiz solutions October 20, 2006

1 Does

∞
∑
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converge or diverge? (5 points)

All the terms are positive, so we can use a limit comparison test with bn =
1/n:
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which diverges to ∞ because 10/3 is greater than 1. The series
∑

bn diverges
because it is the harmonic series, so

∑

an diverges as well.

2 Find the radius of convergence of

∞
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n=0
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n2
(x+1)n. (5 points) Find its interval

of convergence. (5 points)

Use the ratio test to find the radius of convergence:
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|x + 1|

1 + 2/n + 1/n2

= |x + 1|

So, the series converges whenever |x+1| < 1 and diverges whenever |x+1| > 1.
Thus, the radius of convergence is 1.

The center of the power series is x = −1. To find the interval of convergence,
we need to check for convergence on the boundaries of the radius of convergence
x = −1 − 1 = −2 and x = −1 + 1 = 0. If we plug in x = 0, the power series
becomes:

∞
∑

n=0
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which is an alternating series and converges by the alternating series test. If we
plug in x = −2, the power series becomes:
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n2
(−1)n =

∞
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1
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which is a p-series with p = 2, so it converges. Thus, the interval of convergence
is [−2, 0].


