1 Find a general solution to $y^{\prime \prime}+2 x y^{\prime}+2 y=0$ as a power series (10 points).
We write $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ and then take the derivatives:

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Then we substitute these into the differential equation:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} 2 n a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

In order to get the powers of x to all be the same, we replace n with $n+2$ in the first summation. Also, the term of the second summation with $n=0$ is 0 so we can change the summation to start from 0 without changing the sum, so:

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} 2 n a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n} & =0 \\
\sum_{n=0}^{\infty}\left((n+2)(n+1) a_{n+2}+(2 n+2) a_{n}\right) x^{n} & =0
\end{aligned}
$$

If a power series is identically zero, then all the coefficients are zero, so

$$
(n+2)(n+1) a_{n+2}+(2 n+2) a_{n}=0
$$

for $n \geq 0$. Solving this for a_{n+2} gives the recursive formula:

$$
a_{n+2}=-\frac{2 n+2}{(n+2)(n+1)} a_{n}=-\frac{2}{n+2} a_{n}
$$

The explicit formulas for a_{n} are:

$$
\begin{aligned}
a_{2 k} & =\frac{(-2)^{k} a_{0}}{(2 k)(2 k-2) \cdots(2)}=\frac{(-1)^{k} a_{0}}{k!} \\
a_{2 k+1} & =\frac{(-2)^{k} a_{1}}{(2 k+1)(2 k-1) \cdots(1)}=\frac{(-2)^{k}(2 k)(2 k-2) \cdots(2) a_{1}}{(2 k+1)!}=\frac{(-1)^{k} 2^{2 k} k!a_{1}}{(2 k+1)!}
\end{aligned}
$$

2 A swinging pedulum can be approximately described by the differential equation:

$$
\theta^{\prime \prime}+c \theta^{\prime}+\frac{g}{L} \theta=0
$$

Suppose that $c=2, g=9.8$ and $L=4.9$. What is the general solution to the differential equation? (5 points)

Substituting in the values of the constants, the equation becomes $\theta^{\prime \prime}+2 \theta^{\prime}+$ $2 \theta=0$. The auxillary equation is $r^{2}+2 r+2=0$. Using the quadratic formula the roots of the polynomial are:

$$
r=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 2}}{2}=\frac{-2 \pm \sqrt{-4}}{2}=-1 \pm 1 i
$$

Thus the general solution is:

$$
\theta=A e^{-t} \sin t+B e^{-t} \cos t
$$

