(Note: $\int \tan u d u=\ln |\sec u|+C$)

1 Find the general solution to $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-x}+\sin x$ using the method of undetermined coefficients (7 points).

The auxillary equation is $r^{2}+4 r+3=0$. This has solutions $r=-1$ and $r=-3$. Thus, the complementary solution is $y_{c}=C_{1} e^{-x}+C_{2} e^{-3 x}$.

Our first guess for a solution might be $y_{p}=A e^{-x}+B \sin x+C \cos x$, but notice that $A e^{-x}$ is already a solution to the complementary equation. Thus, we multiply by x to get $y_{p}=A x e^{-x}+B \sin x+C \cos x$. Now, we take the derivatives:

$$
\begin{aligned}
& y_{p}^{\prime}=-A x e^{-x}+A e^{-x}+B \cos x-C \sin x \\
& y_{p}^{\prime \prime}=A x e^{-x}-2 A e^{-x}-B \sin x-C \cos x
\end{aligned}
$$

Then we plug these into the original equation and group the similar terms:

$$
\begin{aligned}
y_{p}^{\prime \prime}+4 y_{p}^{\prime}+3 y_{p}= & \left(A x e^{-x}-2 A e^{-x}-B \sin x-C \cos x\right) \\
& +\left(-4 A x e^{-x}+4 A e^{-x}+4 B \cos x-4 C \sin x\right) \\
& +\left(3 A x e^{-x}+3 B \sin x+3 C \cos x\right) \\
= & (A-4 A+3 A) x e^{-x}+(-2 A+4 A) e^{-x} \\
& +(-B-4 C+3 B) \sin x+(-C+4 B+3 C) \cos x \\
= & 2 A e^{-x}+(2 B-4 C) \sin x+(4 B+2 C) \cos x
\end{aligned}
$$

Since this has to equal $e^{-x}+\sin x$, we can equate coefficients and get the following three equations:

$$
\begin{aligned}
2 A & =1 \\
2 B-4 C & =1 \\
4 B+2 C & =0
\end{aligned}
$$

This means that $A=1 / 2$. Also $C=-2 B$ from the last equation. Substituting this into the second equation gives $2 B+8 B=10 B=1$, so $B=1 / 10$ and $C=-1 / 5$.

Putting all this together, the general solution is

$$
y=\frac{x e^{-x}}{2}+\frac{\sin x}{10}-\frac{\cos x}{5}+C_{1} e^{-x}+C_{2} e^{-3 x}
$$

2 Find the general solution to $y^{\prime \prime}+4 y=\sec 2 x$. (Hint: use variation of parameters) (8 points).

The auxillary equation is $r^{2}+4=0$, which has solutions $r= \pm 2 i$. Thus the complementary solution is $y_{c}=C_{1} \sin 2 x+C_{2} \cos 2 x$.

Using variation of parameters, we guess $y_{p}=u_{1} \sin 2 x+u_{2} \cos 2 x$. Then we have the following two equations:

$$
\begin{aligned}
u_{1}^{\prime} \sin 2 x+u_{2}^{\prime} \cos 2 x & =0 \\
2 u_{1}^{\prime} \cos 2 x-2 u_{2}^{\prime} \sin 2 x & =\sec 2 x
\end{aligned}
$$

From the first, we get that

$$
u_{2}^{\prime}=-u_{1}^{\prime} \sin 2 x / \cos 2 x=-u_{1}^{\prime} \tan 2 x
$$

The substitute this into the second equation to get:

$$
\begin{aligned}
2 u_{1}^{\prime} \cos 2 x+2 u_{1}^{\prime} \tan 2 x \sin 2 x & =\sec 2 x \\
2 u_{1}^{\prime}(\cos 2 x+\sin 2 x \tan 2 x) & =\frac{1}{\cos 2 x} \\
u_{1}^{\prime} & =\frac{1}{2 \cos 2 x(\cos 2 x+\sin 2 x \tan 2 x)} \\
& =\frac{1}{2\left(\cos ^{2} 2 x+\sin ^{2} 2 x\right)} \\
& =\frac{1}{2}
\end{aligned}
$$

Then we substitute to find u_{2}^{\prime} :

$$
u_{2}^{\prime}=-u_{1}^{\prime} \tan 2 x=-\frac{1}{2} \tan 2 x
$$

Now we integrate u_{1}^{\prime} and u_{2}^{\prime} to get:

$$
\begin{aligned}
& u_{1}=\frac{x}{2} \\
& u_{2}=-\frac{1}{4} \ln |\sec 2 x|
\end{aligned}
$$

Thus,

$$
y_{p}=\frac{x \sin 2 x}{2}-\frac{\ln |\sec 2 x| \cos 2 x}{4}
$$

Putting this together with the complementary solution:

$$
y=\frac{x \sin 2 x}{2}-\frac{\ln |\sec 2 x| \cos 2 x}{4}+C_{1} \sin 2 x+C_{2} \cos 2 x
$$

