Math 1B quiz solutions

November 29, 2006

(Note: $\int \tan u \, du = \ln |\sec u| + C$)

1 Find the general solution to $y'' + 4y' + 3y = e^{-x} + \sin x$ using the method of undetermined coefficients (7 points).

The auxiliary equation is $r^2 + 4r + 3 = 0$. This has solutions r = -1 and r = -3. Thus, the complementary solution is $y_c = C_1 e^{-x} + C_2 e^{-3x}$.

Our first guess for a solution might be $y_p = Ae^{-x} + B\sin x + C\cos x$, but notice that Ae^{-x} is already a solution to the complementary equation. Thus, we multiply by x to get $y_p = Axe^{-x} + B\sin x + C\cos x$. Now, we take the derivatives:

$$y'_{p} = -Axe^{-x} + Ae^{-x} + B\cos x - C\sin x$$
$$y''_{p} = Axe^{-x} - 2Ae^{-x} - B\sin x - C\cos x$$

Then we plug these into the original equation and group the similar terms:

$$y_p'' + 4y_p' + 3y_p = (Axe^{-x} - 2Ae^{-x} - B\sin x - C\cos x) + (-4Axe^{-x} + 4Ae^{-x} + 4B\cos x - 4C\sin x) + (3Axe^{-x} + 3B\sin x + 3C\cos x) = (A - 4A + 3A)xe^{-x} + (-2A + 4A)e^{-x} + (-B - 4C + 3B)\sin x + (-C + 4B + 3C)\cos x = 2Ae^{-x} + (2B - 4C)\sin x + (4B + 2C)\cos x$$

Since this has to equal $e^{-x} + \sin x$, we can equate coefficients and get the following three equations:

$$2A = 1$$
$$2B - 4C = 1$$
$$4B + 2C = 0$$

This means that A = 1/2. Also C = -2B from the last equation. Substituting this into the second equation gives 2B + 8B = 10B = 1, so B = 1/10 and C = -1/5.

Putting all this together, the general solution is

$$y = \frac{xe^{-x}}{2} + \frac{\sin x}{10} - \frac{\cos x}{5} + C_1 e^{-x} + C_2 e^{-3x}.$$

2 Find the general solution to $y'' + 4y = \sec 2x$. (Hint: use variation of parameters) (8 points).

The auxillary equation is $r^2 + 4 = 0$, which has solutions $r = \pm 2i$. Thus the complementary solution is $y_c = C_1 \sin 2x + C_2 \cos 2x$. Using variation of parameters, we guess $y_p = u_1 \sin 2x + u_2 \cos 2x$. Then we

have the following two equations:

$$u'_1 \sin 2x + u'_2 \cos 2x = 0$$

 $2u'_1 \cos 2x - 2u'_2 \sin 2x = \sec 2x$

From the first, we get that

$$u_2' = -u_1' \sin 2x / \cos 2x = -u_1' \tan 2x$$

The substitute this into the second equation to get:

$$2u'_{1} \cos 2x + 2u'_{1} \tan 2x \sin 2x = \sec 2x$$

$$2u'_{1} (\cos 2x + \sin 2x \tan 2x) = \frac{1}{\cos 2x}$$

$$u'_{1} = \frac{1}{2 \cos 2x (\cos 2x + \sin 2x \tan 2x)}$$

$$= \frac{1}{2(\cos^{2} 2x + \sin^{2} 2x)}$$

$$= \frac{1}{2}$$

Then we substitute to find u'_2 :

$$u_2' = -u_1' \tan 2x = -\frac{1}{2} \tan 2x$$

Now we integrate u'_1 and u'_2 to get:

$$u_1 = \frac{x}{2}$$
$$u_2 = -\frac{1}{4} \ln|\sec 2x|$$

Thus,

$$y_p = \frac{x \sin 2x}{2} - \frac{\ln|\sec 2x|\cos 2x}{4}$$

Putting this together with the complementary solution:

$$y = \frac{x \sin 2x}{2} - \frac{\ln|\sec 2x|\cos 2x}{4} + C_1 \sin 2x + C_2 \cos 2x$$