1 Find the general solution to $\frac{y^{\prime}}{x}=y+e^{x^{2}}$. (5 points)
First, we rearrange to get the standard form for a linear differential equation:

$$
y^{\prime}-y x=x e^{x^{2}}
$$

Now we find the integrating factor:

$$
e^{\int-x d x}=e^{-x^{2} / 2}
$$

Then we multiply our original equation by the integrating factor:

$$
\begin{aligned}
e^{-x^{2} / 2} y^{\prime}-e^{-x^{2} / 2} y x & =e^{-x^{2} / 2} x e^{x^{2}} \\
\left(e^{-x^{2} / 2} y\right)^{\prime} & =e^{x^{2} / 2} x \\
e^{-x^{2} / 2} y & =\int e^{x^{2} / 2} x d x
\end{aligned}
$$

Use the substitution $u=x^{2} / 2, d u=x d x$:

$$
\begin{aligned}
& =\int e^{u} d u \\
& =e^{u}+C \\
& =e^{x^{2} / 2}+C \\
y & =e^{x^{2}}+C e^{x^{2} / 2}
\end{aligned}
$$

2 Find the general solution to the differential equation $y^{\prime \prime}+y^{\prime}=12 y$. (5 points)
The auxillary equation is $r^{2}+r-12=0$. This polynomial factors as $(r+$ $4)(r-3)$, so it has roots at $r=-4$ and $r=3$. Thus, the general solution to the differential equation is $C_{1} e^{-4 x}+C_{2} e^{3 x}$.

3 Find the Maclaurin series for $x \sin x^{2}$. (5 points)
The Maclaurin series for $\sin x$ is $\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$ Thus,

$$
\begin{aligned}
x \sin x^{2} & =x \sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} x \frac{x^{4 n+2}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{x^{4 n+3}}{(2 n+1)!}
\end{aligned}
$$

