1 Find the general solution to the equation $y^{\prime}+y / x+x^{2}-1=0$. (5 points)
This is a linear differential equation after rearranging to get the standard linear form:

$$
y^{\prime}+y / x=-x^{2}+1
$$

First we find the antiderivative of $1 / x$, which is $\ln x$. The integrating factor is then $e^{\ln x}=x$. Then we multiply by this integrating factor:

$$
\begin{aligned}
y^{\prime} x+y & =\left(-x^{2}+1\right) x \\
(y x)^{\prime} & =-x^{3}+x \\
y x & =\int-x^{3}+x d x \\
& =-\frac{x^{4}}{4}+\frac{x^{2}}{2}+C \\
y & =-\frac{x^{3}}{4}+\frac{x}{2}+\frac{C}{x}
\end{aligned}
$$

which is the general solution.
2 Find the general solution to the differential equation $4 y^{\prime \prime}+4 y^{\prime}+y=0$. $\quad(5$ points)

This is a second-order differential equation. The auxillary polynomial is $4 r^{2}+4 r+1$, which factors as $(2 r+1)(2 r+1)$. This has a root only at $r=-1 / 2$. Thus, the general solution is

$$
C_{1} e^{-x / 2}+C_{2} x e^{-x / 2}
$$

3 Find the Maclaurin series for the function: (5 points)

$$
f(x)= \begin{cases}\frac{e^{x}-1}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

The Maclaurin series for $e^{x}-1$ is

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!}
$$

Then we can divide by x term by term to get:

$$
\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)!}
$$

