1 Sketch a direction field for the differential equation $y^{\prime}=-x / y$ (3 points) and sketch a solution (2 points). (Note that the differential equation is not defined for $y=0$).

The solution curve is a half-circle centered at the origin. The slopes of the slope field are all tangent to a circle centered at the origin.

2 Find the general solution to the differential equation $y^{\prime}=x y^{2}+x$. (5 points)
We can divide both sides by $y^{2}+1$ to get:

$$
\frac{1}{y^{2}+1} y^{\prime}=x
$$

Thus, we have separated the two variables, so we get the integrals:

$$
\begin{aligned}
\int \frac{1}{y^{2}+1} d y & =\int x d x \\
\arctan y+C_{1} & =\frac{x^{2}}{2}+C_{2}
\end{aligned}
$$

Consolidating the constants by using $C=C_{2}-C_{1}$:

$$
\begin{aligned}
\arctan y & =\frac{x^{2}}{2}+C \\
y & =\tan \left(\frac{x^{2}}{2}+C\right)
\end{aligned}
$$

3 The population of rockfish is modeled by the differential equation $P^{\prime}=k P(1-$ $P / K)$ where the carrying capacity K is $10^{5}, k=.1$, and the time is measured in years. If the population is 10^{3} at $t=0$, what is the equation for the number of rockfish after t years? (5 points)

The differential equation is a logisitic equation and the solution is

$$
P(t)=\frac{K}{1+A e^{-k t}}=\frac{10^{5}}{1+A e^{-.1 t}}
$$

By using the initial condition, we get that:

$$
\begin{aligned}
10^{3} & =\frac{10^{5}}{1+A} \\
1+A & =10^{2}=100 \\
A & =99
\end{aligned}
$$

so

$$
P(t)=\frac{10^{5}}{1+99 e^{-.1 t}}
$$

