1 If $y^{\prime}=F(x, y)$ is a differential equation, $y_{0}=y\left(x_{0}\right)$ is an initial condition, and the step size is h, what is the next point produced by Euler's method? (Hint: the x coordinate is $x_{0}+h$) (5 points)

The point $\left(x_{0}+h, y_{0}+h F\left(x_{0}, y_{0}\right)\right)$.
2 A population of archaea grows proportionally to the size of the population. Every five hours the population triples. If the initial population is 1, what is the formula for the number of archaea after t hours? (3 points) What is the differential equation describing the general population curve? (2 points)

The population equation is $P=3^{t / 5}$. We can rewrite this equation as $P=e^{t(\ln 3) / 5}$, which is an exponential curve with $k=(\ln 3) / 5$. The differential equation describing the population curve is $P^{\prime}=P(\ln 3) / 5$.

3 Find the solution to the differential equation $y^{\prime}=\left(1+x^{2}\right) / y$ with the initial condition $y=2$ at $x=1$. (5 points)

Rearrange to separate the variables:

$$
y y^{\prime}=1+x^{2}
$$

Then we get the integrals:

$$
\begin{aligned}
\int y d y & =\int 1+x^{2} d x \\
\frac{y^{2}}{2}+C_{1} & =x+\frac{x^{3}}{3}+C_{2} \\
y^{2} & =2 x+\frac{2 x^{3}}{3}+2 C_{2}-2 C_{1}
\end{aligned}
$$

Use $C=2 C_{2}-2 C_{1}$:

$$
\begin{aligned}
y^{2} & =2 x+\frac{2 x^{3}}{3}+C \\
y & =\sqrt{2 x+\frac{2 x^{3}}{3}+C}
\end{aligned}
$$

Now we plug in $x=1$ and $y=2$ to get:

$$
\begin{aligned}
2 & =\sqrt{2+\frac{2}{3}+C} \\
4 & =\frac{8}{3}+C \\
\frac{4}{3} & =C
\end{aligned}
$$

Thus, the solution is

$$
y=\sqrt{2 x+\frac{2 x^{3}}{3}+\frac{4}{3}}
$$

