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Three Fractal Models in Finance:
Discontinuity, Concentration, Risk

BENOIT B. MANDELBROT™

Rather than to attempt to reconstitute the actual lecture given in
Siena, this text loosely follows parts of the Preface and
Introduction of a book of almost the same title. This book was
announced in Siena and is due out at the same time as this paper; it
will be referred to as M 1997¢ (the style of reference is explained at
the beginning of the Bibliography ).

Introduction

Public opinion and the profession know better than ever before that
prices often change with hair-raising swiftness. In 1996, IBM experienced
two large near-discontinuities: it fell by more than 10% and later rose by
13.2%. Furthermore, even in the absence of actual jumps, price changes
do not occur evenly over time, but tend to be concentrated in short
“turbulent” periods. Thus, concentration, a concept arising from the
familiar phenomenon of industrial concentration, generalizes the
variation of prices. Wide awareness of this form of concentration is
reinforced by failures of portfolios that claimed to be free of risk.

My work in finance has been largely devoted to the roles of
discontinuity and closely related forms of concentration. Stock Market
“chartists”, as contrasted with the “fundamentalists”, believe that charts
embody everything needed to predict the future and devise winning
strategies. Whatever one’s position on this dispute, I believe that one must
understand the structure of charts thoroughly, including features that fail
to bring positive returns to the investor. The understanding gained by a
thorough exploration is bound to bring significant knowledge about the
mechanisms of the financial markets and about the laws of economics.
Most importantly, this knowledge is essential for evaluating the
unavoidable risks of trading.

The search for winning trading strategies is a goal of every study in

* Yale University, New Haven, CT 06520-8283 USA..



172 Economic Notes 2-1997

finance, but will not be addressed here. Ultimate scientific explanation is
attractive and important, but financial engineering cannot wait for full
explanation. That is, it is legitimate to strive towards a second best: a
“descriptive phenomenology” that is organized tightly enough to bring a
degree of order and understanding.

Indeed, a multitude of consequences that can be tested empirically will
be drawn from somewhat abstract statistical algorithms to be described as
“scaling”. They look simple, even simple-minded, but prove to be
“creative”, insofar as they generate unexpectedly complicated and
structured behavior. This will establish that a wealth of features beloved
by chartists need not be inserted “by hand”, but may well follow inevitably
from suitable forms of totally random variability.

The word “model” shall not denote the mathematical expression of an
economic relationship. It will denote a statistical algorithm meant to fulfill
an apparently extravagant ambition: it begins with property assumed as
“axiom”, and is able to produce sample data streams that are hard to
distinguish from actual records, either by eye or by algorithm.

At this point in time, my most general model is described by the
words “fractional Brownian motion of multifractal time”. Without ad-hoc
“patch” or “fix”, it successfully accounts for many features of the
variation of foreign exchange rates, and will be explained below.

All told, my methods of investigation are those of a practicing
theoretical and computational physicist. My tools were not to reach
physics proper until later, as shall be seen below.

A proper quantitative study of financial markets began in the early
1960s. A reprint of my first contribution to finance, M 1963b {E14}, was
included in Cootner 1964, with interesting comments by the editor, Paul
H. Cootner (1930-1978). One reads that “Mandelbrot ... has forced us to
face up in a substantive way to those uncomfortable empirical
observations that there is little doubt most of us have had to sweep under
the carpet up to now. With determination and passion he has marshalled,
as an integral part of his argument, evidence of a more complicated and
much more disturbing view of the economic world than economists have
hitherto endorsed. Furthermore, this new view has a strong attraction for
many of us”.

Elsewhere in Cootner 1964, one reads that “There can be no doubt
that Mandelbrot’s hypotheses are the most revolutionary development in
the theory of speculative prices since Bachelier 1900”. This last reference
can be viewed as the point of departure of a rational approach to finance,
since it was the first to describe the Brownian motion model, which will be
discussed below.

Needless to say, my view of the economic world’s complexity was not
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adopted in 1964, its implications were not faced, and the study of finance
continued to rely on the “1900 model” of Bachelier, which pointedly
denies discontinuity and concentration. Those obvious defects have
become unacceptable.

To tackle discontinuity and concentration, I conceived in the late
fifties a tool that has already been mentioned, but deserves elaboration. I
concluded that much in economics is self-affine; a simpler word is scaling.
This notion is most important, and also most visual (hence closest to
being self-explanatory), in the context of the financial charts. Folklore
asserts that “all charts look the same”. For example, to inspect a chart
from close to, then from far away, take the whole and diverse pieces of it,
and resize each to the same horizontal format known to photographers as
“landscape”. Two renormalized charts are never identical, of course, but
the folklore asserts that they do not differ in kind. The scholarly term for
“resize” is to “renormalize” by performing an “affinity”, which motivated
me in 1977 to coin the term “self- affinity”. (Scaling can also be self-
similar, as in the bulk of M 1982f {FGN}). The scholarly term for “to
look alike™ is “to remain statistically invariant by dilation or reduction”.

I took this folklore seriously, and one can say that a good portion of
M 1997¢ studies financial charts as geometric objects.

Brownian motion is scaling also, but it is best to restrict this term to
non-Brownian models. Non-Brownian forms of scaling are sometimes
called “anomalous”; a better term is “non-Fickian”.

Viewing the renormalized pieces of a chart as statistical samples from
the same underlying process, I identified, one after another, several non-
Brownian implementations of scaling, and tested them — successfully — in
one or another financial context.

In this spirit, the “M 1963 model”, centered on M 1963b {El4},
concerned speculative prices for which long-term dependence is
overwhelmed by discontinuities or periods of very fast change.

As soon as advances in computer graphics made it possible, fractal
“forgeries” of price records were drawn for the M 1963 model. These
forgeries prove to be realistic. This significant discovery became an early
exhibit of a surprising and fundamental theme common to all areas of
fractal geometry.

In a later “M 1965 model” (M 1965h {H}, M & Van Ness 1968 {H},
and many other chapters in M 1997h, the key factor is long-term
dependence.

The “M 1967 model”, described in M & Taylor 1967 {E21}, soon
introduced the notion of trading time and pointed out the relevance of a
once esoteric mathematical notion called “subordination”.

Finally, M 1972j {N14} introduced the notion of multifractal, and
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concluded (page 345) by immediately pointing out this notion’s possible
implications to economics. This is why the term “M 1972 model” will be
applied to the approach that I developed in recent years on the basis of
multifractals.

The scaling principle of economics incorporates these and all other
forms of variability and promises further generalizations. I also used
scaling in other contexts of economics, such as the distribution of income
and of firm sizes.

M 1963b {E14}, as soon became clear, addressed concerns that were
not being faced, that is, answered questions that were not being widely
asked, and my reliance on computers was prohibitive. More importantly,
the conceptual tools of my work, and its perceived consequences, were
resisted. In a way, one may say that I was “victimized” by a case of
unexpected historical primacy of financial economics over physics.

An earlier case of such primacy has already been mentioned twice. Odd
but true, and implied in the quote from Cootner 1964, a maverick named
Louis Bachelier (1870-1946) discovered Brownian motion while studying
finance, five years before Albert Einstein and others independently
rediscovered and developed it in physics. Eventually, but not until the
1960s, many hands brought Brownian motion back into economics.

Quite similarly, scaling and renormalization were central to my work
in finance several years before they were independently discovered and
developed in the study of critical collective phenomena of physics,
through the work of Fisher, Kadanoff, Widom, Wilson, and others. In
fact, “scaling” and “renormalization” are those physicists’ terms, and
replace my weaker terminology. This “rerun” of the story of Brownian
motion confirms that, while economics finds it easy to borrow from
established physics, the cases of historical primacy of economics over
physics start by being a handicap if they involve overly unfamiliar and
untested tools.

Yet another reason made me move out of economics. When P. H.
Cootner described M 1963b {E14} as a “revolutionary development”, did
he think mostly of destruction or reconstruction? The answer is found in
Cootner 1964: “Mandelbrot, like Prime Minister Churchill before him,
promised us not utopia, but blood, sweat, toil and tears. If he is right,
almost all our statistical tools are obsolete..., past econometric work is
meaningless... It would seem desirable not only to have more precise (and
unambiguous) empirical evidence in favor of Mandelbrot’s hypothesis as
it stands, but also to have some tests with greater power against
alternatives that are less destructive of what we know”.

The wish to see improved statistical tests can be applauded without
reservation. But it is prudent to fear that “what we know” is not
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necessarily the last word. Allow me just one example. When Fast Fourier
algorithms became available in around 1964, spectral analysis created
great interest among economists. Tests showing some price series to be
nearly white were interpreted as implying the absence of serial
dependence. The result made no sense and was forgotten. But (as reported
in Chapter E6 of M 1997¢) a promising non-Gaussian model of price
variation is white, despite the presence of strong serial dependence! It
often seems that novel uses of known statistics may at the same time test a
hypothesis and test a test!

In Cootner’s already quoted words, my “view of the economic world
is more complicated and much more disturbing than economists have
hitherto endorsed”. This implies that the erratic phenomena to which this
book is devoted deserve a special term to denote them, and explain why I
chose to call them wildly random. By contrast, Brownian motion and most
models used in the sciences deserve to be characterized as mildly random,
and lognormality and some other treacherous forms of randomness that
are intermediate between the mild and the wild will be described as slow.

The point is this: the specificity of slow or wild randomness in
economics could be disregarded for many years, but can be no longer. In
particular, new statistical tools are urgently needed.

The diverse obstacles that made my work “premature” in the 1960s
have vanished. Computers are everywhere. Physicists and fractalists have
developed new modeling tools that can be applied to finance. Abundant
financial data are readily available. Events ensure that concern with
discontinuity is near-universally shared, and my work is pointedly
addressed to the many “anomalies” that bedevil prevailing financial
models.

Overall, my ideas now fit in the framework of fractals (hence also of
chaos) and of experimentation with new financial products.

L. An Entirely Pragmatic View of the Slippery Notion of Randomness

Randomness is an intrinsically difficult idea that seems to clash with
powerful facts or intuitions. In physics, it clashes with determinism, and in
finance it clashes with instances of clear causality, economic rationality
and perhaps even free-will. It is easy to acknowledge that randomness can
create its peculiar regularities. But it is difficult to acknowledge that such
regularities either could be interesting or could arise in physics or finance.
As a result, the fact that any statistical model could be effective seems «
priori inconceivable and is difficult to acknowledge.

The problem is mitigated in physics because the atoms in a gas are not
known individually, and much exaggerated in finance for the opposite
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reason. Furthermore, it is difficult in finance to disentangle the roles of
the observer and the active participant. Most persons seek financial
knowledge for the purpose of benefitting from it, and thereby modifying
what they benefit from. But merely describing the markets does not
perturb them, and my ambition is simply to observe, describe some degree
of order, and thereby gain some degree of understanding. This leads to a
pragmatic view described in Chapter 21 of M 1982f {FGN}, titled
“Chance as a Tool in Model Making”. Several paragraphs of that chapter
will now be paraphrased. In short, the notion of randomness is both far
more effective and far less assertive than is often assumed or feared.

It is necessary to first comment on the term, random. In everyday
language, a fair coin is called random, but not a coin that shows head
more often than tail. A coin that keeps a memory of its own record of
heads and tails is viewed as even less random. This mental picture is
present in the term random walk, especially as used in finance (Section 3).

Of course, statisticians hold a broader view of randomness, which
includes coins that are not fair or have a memory. However, more or less
explicitly, statisticians ordinarily deal with observations that fluctuate
around a “normal state” that represents equilibrium. A good picture of that
classical scenario is provided by the edge of a razor blade. When greatly
enlarged, it presents many irregularities, but from the user’s viewpoint, a
high quality blade is practically straight overall, therefore its description
splits naturally into a fluctuation and a highly representative “trend”. In
Chapter ES of M 1997e, such fluctuations deserve to be called mild.

For contrast, consider a coastline like Brittany’s or Western Britain’s.
Taking into account an increasingly long portion will average out the
small irregularities, but at the same time inject larger ones. A straight
trend is never reached and interesting structures exist at every stage.

All too often, however, “to be random” is understood as meaning “to
lack any structure or property that would single out one object among
other objects of its kind”. The question arises, is this a fair
characterization of randomness or, on the contrary, is the mathematical
notion of chance powerful enough to bring about the strong degree of
irregularity and variability encountered in coastlines as well as in financial
charts?

The answer to that question came as a surprise: not only is chance
powerful enough, but in many cases it goes beyond the desired goal such
as, for example, the case for this generalized process I introduced in M
1967b {N10} and proposed to call “sporadic”. In other words, I perceive
a tendency to grossly underestimate the ability of chance to generate
extremely striking structures that had not been deliberately inserted in
advance.
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However, fulfilling this goal demands forms of randomness that are
far broader than is acceptable in the bulk of statistics. Once again. the
physicists’ concept of randomness is shaped by mild chance that is
essential at the microscopic level, while at the macroscopic level it is
insignificant. In the scaling random fractals that concern us, on the
contrary, the importance of chance remains constant over a wide range of
levels, including the macroscopic one. This non-averaging change is
described in Chapter ES of M 1997e as wild: I continually explore it, and
claim that it, and nor mild chance, is the proper tool in finance and
€Conomics.

Be that as it may, the relationship between unpredictability and
determinism raises fascinating questions, but this work has little to say
about them. It makes the expression “at random” revert to the intuitive
connotation it had at the time when it entered medieval English. The
original French phrase “un cheval & randon” is reputed to have been
unconcerned with underlying causes, such as the horse’s psychology, and
merely served to denote an irregular motion the horseman could not fully
predict and control.

Thus, while chance evokes all kinds of quasi-metaphysical anxieties, |
am little concerned with whether or not Einstein’s words, “the Lord does
not play with dice”, are relevant to finance. I am also little concerned with
mathematical axiomatics. The reason I make use of the theory of
probability is because there is no alternative: it is the only mathematical
tool available to help map the unknown and the uncontrollable. It is
fortunate that this tool, while tricky, is extraordinarily convenient and
proves powerful enough to go well beyond mild randomness to a wild and
“creative” state of that concept.

Let us draw some other consequences from the preceding
combination of a credo and a promise. To be entitled to use probability
theory, there is no need to postulate that every financial and economic
event is generated by chance, rather than by cause. After the fuct (ex-post),
one may find uncontroversial or reasonable causes for at least some
features. But before the fact (ex-ante), the situation is very different. In
order to move towards a quantitative approach to economics (a “rational
economics” to echo the grand old term “rational mechanics™), one must
unavoidably resort to probability theory. Further subtle but significant
differences between ex-post and ex-ante are found throughout my work.

To believe that the concept of randomness has far more power than it
is credited with is essential, but is not enough. One must construct actual
random processes that use few inputs, are tightly organized and fit the
data so well as to yield a degree of understanding. To show this is feasible
is an ambition of my work.
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2. Graphics, the Computer, Statistics and Beyond: “Index Numbers” and
Other Summaries of the Data

“To see is to believe”, and to prove that the last paragraph of the
preceding section is valid, the easiest and most convincing path consists in
allowing the eye to compare the actual data to the outputs of random
processes, without the technical details given in Chapter E6 of M 1997e.
The reader is, therefore, encouraged to compare Figures 1 and 2. The
latter is a simulation of a surprisingly simple process (which took a
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surprisingly long time to be identified!) and it can be “tuned” to achieve a
wide range of different behaviors.

My claim is that ability to imitate is a form of understanding. To
preempt a challenge, imagine that a statistical test proclaims that the data
in Figure 1 are actually very different from the simulation in Figure 2. If
so, what should the proper response be: to dismiss the evidence of the eye
or to look carefully for hidden assumptions that may have biased the
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statistical test? This second possibility is the one that this section proposes
to examine in detail. Many readers may want to proceed to Section 3.

Throughont most of history, computation and pictorial
representation were at best prohibitively expensive and mostly impractical
or even inconceivable. Deep philosophical reasons were put forward to
justify the fact that the eye became suspect and was almost completely
banished from “hard science”. In my opinion, those philosophical reasons
were unconvincing, and the real reasons for foresaking the eye was simply
practical. Therefore, the advent of cheap computing and graphics will
have a profound and increasing impact throughout the sciences. Of
special concern to us is its impact on probability theory and statistictive
fields are related but separate and best examined in turn.

In the past, random processes could only be investigated through
formulas and theorems. The resulting knowledge is invaluable, but three
episodes made me conclude, long ago, that it is incomplete.

The shallowness of my earlier understanding of random walk first
became obvious after 1 spent hours dreaming while examining, again
and again, the sole illustration in Feller 1950 (Volume 1). This
illustration, a record of painstaking actual throws of a coin, is
reproduced, with comments, in Figure 4 of M 1963e {E3}, and also in
Plate 241 of M 1982f {FGN}. William Feller later confided to me that
this was one of several possible illustrations prepared for him, and was
chosen because the alternatives were even further removed from the
readers’ prejudices. It was disappointing that a figure I found inspiring
should exemplify the fact known to everyone, that Man often uses
pictures to disguise reality, instead of illustrating it. But Man also uses
words for the same purpose! Be that as it may, I think that the
publication of all of Feller's pictures would have provided clearer
“intuitive” or “in the fingers” understanding.

Second episode: following immediately upon M 1963b {E14}, Berger
& M 1963 {N} faced the challenge of making it obvious that a certain
physical phenomenon involved a degree of randomness well beyond the
mild. To force conviction, they had to resort to a hand-cut wire model.

Third episode: as soon as crude “Calcomp” tracing tables could be
attached to a computer, M & Wallis 1969 a, b, ¢ {H} hastened to put
them to use in illustrating a process that will be discussed below.
Comparing the data with the sample functions of the M 1965 model and
other models, we saw instantly that certain models could not possibly be
correct, while other models seemed adequate. The “objective” statistical
tests available at that time provided less clear-cut distinctions, confirming
that they had been devised to deal with a context substantially different
from the context of fractals. Only half in jest, we thought that the
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calculations involving existing statistical techniques were not only a way
to test a model, but also to test the tests.

Given the minimal cost of sample graphs, I never felt we erred by
producing too many, but often fear we err by producing too few.

The same issue can be seen under another light. Under the old
technological constraints, the long lists of data provided by observation
and measurement could not be graphed or manipulated usefully, and it
was imperative to begin by compressing them drastically. In economics, of
course, this compression yielded diverse “indicators” or “index numbers”.
The most classical and simplest index numbers are (weighted) averages,
but it is useful to use the same term more widely, in particular, for
moments of order higher than 1.

Needless to say, the proper selection of index numbers is an endless
source of controversy, and skeptics claim that suitable weights can vield
any result one wishes. Nevertheless, it is widely believed that moments are
an intrinsic concept. But are they really? In mechanics, it is indeed true that
the first and second moments, weighted by mass, yield a body’s center of
gravity and radius of gyration. In finance, the value of a portfolio is a non-
controversial first sample moment; more controversial is “cost-of-living”.
But, ex-ante, second and higher moments are far from unquestionable. It
is true that they play a central role in Taylor series (to be touched upon at
the end of Chapter E5 of M 1997¢), but their main role is to provide
quantitative “index numbers”, whose usefulness must not be viewed as
obvious but must instead be established separately in each case.

An important point is that, ex-post, the compression implicit in the
moments is not necessarily useful but depends sharply on specific
circumstances to be distinguished in Chapter E5 of 1997e. In the cases of
mild randomness, as exemplified above all by independent Gaussian
variables, very simple compression is “sufficient” and preserves the
important information. However, much of M 1997e argues that
economics and finance (as well as many fields of natural science) are
characterized by forms of randomness that are nor mild at all A prime
characteristic of wild randomness is that familiar index numbers
altogether cease to be representative in their case. What should be done
until new and more appropriate statistical tools become available? I think
that one will have to live with graphical tests, and learn to perform them
with care and without haste, taking full advantage of computer graphics.

“When exactitude is elusive, it is better to be approximately right than
certifiably wrong”. To be unquestionably correct is a nice idea but is not
an option, and the Stock Market wisdom quoted in this paragraph’s title
is an excellent characterization of one aspect of my approach. In
particular, the Brownian model of Section 3 claims to be valid without
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restrictions, which is certainly quite wrong, while the scaling models of
Sections 6 to 8 only claim to be approximately exact over a limited range
of applicability. That is, when the data are compared with my theoretical
distributions, one should expect systematic errors of specification that are
larger than errors due to statistical fluctuations.

More detailed reasons for tolerating the imperfection described in this
subsection’s title will be discussed in Section 5 and in Chapter E2 of M
1997e. A discussion of this “necessary tolerance” should be part of
statistics, but is not.

Even the best objective statistical tests are not of universal validity.
Who is testing the testers? My attitude is deeply colored by publications
that reexamined my M 1963 model quantitatively and concluded that
“objective” tests contradict the “subjective” claims I based on graphical
evidence. Actually, that graphical evidence was confirmed again and
again, while the objective tests are forgotten, as they deserved to be.
Indeed, there is no theorem without assumption, and even the best
statistical test can only be used under certain conditions of validity.

Take spectral analysis: this is unquestionably a powerful tool, but a
very tricky one: Chapter E6 of M 1997¢ (Section 3.5) will describe a
significant “blind spot” of spectral whiteness that concerns non-
Gaussianity. It is not a matter of mathematical nitpicking, but it directly
concerns finance. More generally, if my models are in fact close to being
correct, reality lies beyond the domain of applicability of many
universally accepted statistical tests, and we should expect to find that
these tests will conclude against my models’ validity. All too often, strange
as it may sound, the conclusions yielded by such statistical criteria
evaluate both the model and the test in some inextricable combination,
from which little of use can be inferred.

Once again, while statistics works out the above challenges, we have
no choice but to rely on graphics. It is worth noting that fully fleshed-out
and detailed pictures — not skeletal diagrams — put no premium on
concision, therefore on compression. But they put a heavy premium on
the ability of the eye to recognize patterns that existing analytic
techniques were not designed to identify or assess.

3 “Random Walk Down the Street”, Mild Randomness, Brownian Motion
(the “1900" Model), and Martingales

Scaling models are meant to replace the simplest model of price
variation, which Malkiel 1973 breezily called “Random walk down the
street”. Every version assumes that prices change randomly and each price
change is statistically independent of all past ones. The probabilists’
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Figure 3

original random walk proceeds in equal steps, up or down, equally spaced
in time. In Figure 3, the steps are so small as to be indistinct.

Another basic version assumes that price changes follow the Gaussian
(“bell curve”) distribution, which allows for a “mild” level of scatter.
Typical generalizations assume or imply that individual price changes
need not be Gaussian, but are only mildly scattered. In M 1997e, the
technical meaning of the term “mild” is sketched in Chapter E2 and
described in Chapter ES and E6. Quite appropriately, those examples
interpret the word walk to denote a motion that proceeds in steps, while
the alternative M 1963 model proceeds in jumps.
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3.1. The “Ordinary” Wiener Brownian Motion

The continuous-time counterpart of random walk advanced in
Bachelier 1900, is now called Brownian motion, and will be denoted as B (7).
Bachelier’s discovery of Brownian motion in financial speculation occurred
years before physicists discovered it in the motion of small particles, and
decades before a mathematical theory of B (7) was provided by Norbert
Wiener. The tale is recounted in M 1982f {FGN}, p. 392. Hence, the
composite term Wiener Brownian motion (WBM) will be used in case of
ambiguity, in particular, when one must provide contrast with fractional
Brownian motion (Section 7); a term used on occasion is “B 1900 model”.

The main properties of Wiener Brownian motion are best listed in two
categories, as follows.

3.1.1. Invariance Properties of Wiener Brownian Motion

Invariances are familiar in the hard sciences. Thus, classical geometry
begins by investigating what can be done when the shapes one deals with
reduce to lines, planes, or spaces. And the simplest physics arises when some
quantity such as density, temperature, pressure, or velocity is distributed in
homogeneous manner. The line, plane or space, and the homogeneous
distribution on them, are invariant under both displacement and change of
scale: in technical terms, they are both stationary and scaling.

Both properties extend to Wiener Brownian motion.

e Statistical stationarity of price increments. Equal parts of a straight
line can be precisely superimposed on each other, but this is not possible
for the parts of a random process. However, samples of Wiener Brownian
motion taken over equal time increments can be superimposed in a
statistical sense.

« Scaling of price. Moreover, parts of a sample of Wiener Brownian
motion corresponding to non-overlapping time increments of different
durations can be suitably rescaled so they too can be superimposed in a
statistical sense. This key property implements scaling: except for
amplitude and rate of change, the rules of higher- and lower-frequency
variation are the same as the rules of mid-speed frequency variation.

3.2. More Specialized Properties of Wiener Brownian Motion

Stationarity and scaling do not suffice to determine Brownian motion.
It also has the following properties.

« Independence of price increments. Knowing the past brings no
knowledge about the future.
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o Continuity of price variation. A sample of Brownian motion is a
continuous curve, even though it has no derivative anywhere. (A
technicality deserves to be mentioned once: the above properties only hold
almost surely and almost everywhere).

* Rough evenness of price changes. The eye and the ear are more
sensitive to records of changes than of actual values. A record of Wiener
Brownian price changes, over equal time increments D¢, is a sequence of
independent Gaussian variables. A telling term for this process is “white
noise”. The ear hears it like the hum on a low-fidelity radio not tuned to
any station. The eye sees it as a kind of evenly spread “grass™ that sticks
out nowhere. A telling sample is shown in the bottom of Figure 2.

o Absence of clustering in the time locations of the large changes.

e Absence of cyclic behavior.

3.3. The Martingale Assumption, Pro or Con

Another basic property B () must be discussed separately. Bachelier
1900 introduced B(r) as the easiest example he knew of a far broader class
of processes now called martingales, which embody the notion of
“efficient market” and successful arbitraging.

Prices are said to follow a martingale if they somehow acquire the
following desirable property: whether the past is known in full, in part, or
not at all, price changes over all future time spans have an expectation
equal to 0.

This definition allows properties other than the expectation to depend
upon the past (as they do in M 1966b E19}). The notion of martingale
was a bold hypothesis and a major breakthrough in 1900 and eventually
received wide notice, witnessed by Cootner 1964. It does remain attractive
and enlightening, but raises serious difficulties.

A first difficulty is this. ‘A positive martingale always converges; that
is, it eventually settles down and ceases to vary randomly (Samuelson
1965). Conversely, a martingale that continues to vary randomly must
eventually become negative. For example, a random walk eventually
becomes negative. True, a “proportional effect” argument makes it
customary to postulate that it is the logarithm of price that is Brownian, or
at least a martingale. When this is the case, price itself cannot become
negative, but ceases to be a martingale. Therefore, the “efficient market”
justification for martingales disappears.

While a martingale implements the ideal of an efficient market, is it
possible to implement it by arbitraging, even under ideal conditions? The
answer is yes under the conditions postulated in M 1966b {E19}. But the
answer is #o in M 1971e E20}, which postulates that non-arbitraged price
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follows fractional Brownian motion, a generalization of B(f) to be
discussed in Section 7. This function is not a martingale, and cannot be
arbitraged to become one.

4. Brownian Motion's Inadequacies as Model of Price Variation, and
Sketch of Proposed Replacements

Brownian motion is far and way more manageable than any
alternative. An immense mathematical literature grew around it, and
recently developed “financial mathematics™ draws extremely long
mathematical inferences from the assumptions that prices follow a
martingale, and/or that B (7) applies very exactly to prices. Unfortunately,
B(t) is an extremely poor approximation to financial reality. Soon after
1900, Bachelier himself saw that the data are non-Gaussian and statistically
dependent. Thus when the model in Bachelier 1900 was “discovered” and
confronted with reality, those discrepancies were independently observed by
many authors. Thus, Osborne 1962 describes trading as tending to come in
“bursts” and Alexander 1964 concluded that price variation is non-
stationary. In the editor’s comments of Cootner 1964, p. 193, one finds the
suggestion that the bursts may be linked to the model of Berger & M 1963;
not surprisingly, I had the same idea, found it difficult to implement, but
implemented it in due time — as will be seen in Section 8.

More recently, of the many authors who attempted to challenge my
models, every one reports that B (f) is convenient, but not one reports that
price variation is, after all, Brownian.

4.1. A List of Discrepancies Between Brownian Motion and the Facts

« Apparent non-stationarity of the underlying rules. Diagram P in
Figure 1 is an actual record of prices. Different pieces look dissimilar to
such an extent that one is tempted nor to credit them to a generating
process that remains constant in time. While a record of Brownian motion
changes looks like a kind of “grass”, a record of actual price changes
(diagram I of Figure 1) looks like an irregular alternation of quiet periods
and bursts of volatility that stand out from the grass.

» Repeated instances of discontinuous change. On records of price
changes, discontinuities appear as sharp “peaks” rising from the “grass”.

« Clear-cut concentration. A significant proportion of overall change
occurs within clear-cut periods of high price variability. That is, the
“peaks” rising from the “grass” are not isolated, but bunched together.

« Conspicuously cyclic (but not periodic) behavior. For example, the
real price series shown in Figure 1 shows conspicuous “cycles”.
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It will be seen that the preceding discrepancies can be traced to two
characteristics of a more theoretical nature.

* The long-tailed (“leptokurtic”) character of the distribution of price
changes. An especially sharp numerical test of the instability of the sample
variance is provided by the analysis of cotton data in Figure 1 of M 1967j
{E15}: over 50 sub-samples of 30 days, the sample variance ranged a
hundred-fold.

» The existence of long-term dependence.

4.2. The Noah and Joseph Effect, Taken Singly or in Combination

Those and other flaws of Brownian motion are widely acknowledged,
but the usual response is to disregard them or to “fix” WBM piecemeal,
here and there, as needed. The resulting “patchwork” is discussed in
Section 4 of Chapter E2 of M1997e. My approach is very different.
Instead of seeking a grand “model of everything”, I moved in successive
piecemeal steps, adding generality and versatility as suitable tools became
available.

This strategy began by tackling non-Gaussian tails and long
dependence separately. Reflecting two stories in the Bible, those of the
Flood and of the Seven Fat and Seven Lean Cows, the underlying
phenomena were called, respectively, Noah and Joseph Effects (M &
Wallis 1968 {H}). The M 1963 model (Section 6) concerns cases where
serial dependence is unquestionable, but a stronger driving feature resides
in non-Gaussianity. The M 1965 model (Section 7) concerns cases where
non-Gaussianity is unquestionable, but the strongest driving feature
resides in serial dependence.

Because of their simplicity, the M 1963 and M 1965 models remain
mstructive and essential, but they are obviously oversimplified. The M
1967 model simply rephrases the symmetric case of the M 1963 model,
and the M 1972 model goes further and tackles non-Gaussianity and
serial dependence simultaneously. The models in Sections 6 and 7
generalize Brownian motion in two directions one may call orthogonal to
each other, and Section 8 brings those two generalizations together again,
as special cases of the M 1972 model. Ways to separate Noah and Joseph
features in a record of real data are tackled at the end of Section 7.

4.3, Is it Fruitful to Emphasize “The Exceptional’, Even at the Cost of
Temporary and Comparative Neglect of “The Typical’’?

The distinction between the typical and the exceptional is ancient, and
my stress on discontinuity and concentration has been criticized. Clearly,
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when faced with rare events, Man finds it difficult to avoid oscillating
between overestimation and neglect.

Most common is a stress on the typical. It motivated Quételet to his
concept of “average man”, and we read the following in the Preface of a
famous treatise, Marshall 1890. “Those manifestations of nature which
occur most frequently, and are so orderly that they can be closely watched
and narrowly studied, are the basis of economic as of most other scientific
work: while those which are spasmodic, infrequent, and difficult of
observation, are commonly reserved for special examination at a later
stage: and the motto Natura on facit saltum is specially appropriate to a
volume on Economic Foundations... [T]he normal cost of production...
can be estimated with reference to ‘a representative firm’...”.

At first, these words seem to contradict an opinion expressed by
Jacques Hadamad, that “it is the exceptional phenomena which are likely
to explain the usual ones”. But the case of a very concentrated industry
suggests that the two viewpoints need not be in contradiction. Many
believe, as I do, that emphasis on the largest firms agrees with
Hadamard’s opinion when “exceptional” is interpreted as meaning
“concerning few entries in a list of all firms”. But it agrees with Marshall’s
when “representative” is interpreted as meaning “concerning a large
proportion of persons on the list of all the employees of those firms”.

5. Invariance Principles: Stationarity and Scaling

The fractal approach to finance and economics rests on two features.

One is a profound faith in the importance of invariances and in the
possibility of identifying stationarity and scaling as invariance principles
in economics. This will be elaborated upon in Chapter E2 of M 1997e.

The second feature is the recognition that probability theory is more
versatile than generally believed, and the willingness to face several
distinct “states of randomness”. When suitably chosen, a scaling random
process can allow variation that will be described as “wild” in Chapter E5
of M 1997e. The sample functions of wild processes contain significant
features that were not deliberately incorporated into the input, yet,
without a special “fix”, achieve one or several of the following properties.

* Repeated instances of sharp discontinuity can combine with
continuity. The fact that non-Brownian scaling random processes can be
discontinuous and concentrated is extraordinarily fortunate; it is not a
mathematical pathology that could be source of concern.

« Concentration can automatically and unavoidably replace evenness.

e Non-periodic cycles can automatically and unavoidably follow from
long-range statistical dependence.



B. B. Mandelbrot: Three Fractal Models in Finance: Discontinuity, Concentration ... 189

5.1. Principles of Invariance

In mathematics and physics, such principles are a staple and the key
to a wonderful wealth of consequences drawn from one simple idea. But
they are not an established part of economics. I recall the eloquence of
Jacob Marshak (1898-1977), when proclaiming that the single economic
invariance he could imagine concerned the equality between the numbers
of left and right shoes, ... and even that could not be trusted. Marshak
was doubtless thinking of the basic invariance of mathematics and
theoretical physics, which are stated as absolute. However, as already
mentioned in Section 2, other parts of physics find it extraordinarily
useful to work with invariances that are approximate and have a limited
range of applicability.

Thus. I propose to abandon Wiener Brownian motion as a model, but
endeavor to preserve stationarity and scaling as basic invariance
principles of economics.

5.2. Scaling Under an Especially Critical Form of Conditioning

The probabilists’ notation. This notation represents random elements
by capital letters, and their actual values by corresponding lower case
letters. Pr {“event”} will denote the probability of the “event” described
between the braces. EX will denote the expected value of the random
element X\ Furthermore, words like scaling, Gaussian, lognormal will be
used as substantives, to mean scaling, Gaussian or lognormal
distributions.

The scaling distribution. As applied to a positive random variable, the
term scaling. is short for scaling under conditioning. To condition a
random variable U specified by the tail distribution P (u)=Pr {U> u},
suppose that it becomes known that U is at least equal to w. This
knowledge changes the original unconditioned U to a conditioned
random variable W. Using a vertical slash to denote conditioning, the tail
distribution of Wis

P, (u)=Pr {W>u}=Pr{U>u |U>w}=P(u)
P (w)

Now take the tail distribution P (x)= Cu~®=(u/it)"* When w > u,
conditioning yields P, (u)=(u/w)"* This expression is functionally
identical to P (u). The sole response to conditioning is that the scale
changes from u to w. Hence, the tail distribution P(u) = Cu~ % is denoted
by the term scaling. In this wording, “Pareto’s law” is an empirically
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established finding that states that “the frequency distribution of personal
income is scaling”. Conversely, P (1) = Cu~* is the only distribution that
is scaling under this particular conditioning.

By the logarithmic transformation V=Ilog U, this invariance
property reduces to a well-known invariance property of the exponential
distribution Pr {¥ > v} =exp [- o (v — ¥)]. Conditioned by V' >w > 7, the
tail distribution becomes P (v) = Pr{F>v | V> w) = exp[-a(v—w),
which is identical to Pr {¥> v}, except for a change of location rather
than scale.

Starting from an exponentially distributed ¥, a scaling U is obtained
as U=exp V. The logarithmic transformation is simple, the exponential is
well-known, and the passage from ¥ to U is obvious. Therefore, one may
presume that no conclusion that is at the same time new and interesting
can be obtained concerning the scaling U. The interesting surprise is that
this presumption is totally unwarranted. The transformation from Uto V
raises new and difficult questions that go beyond technical detail to deep
and concretely relevant issues. Therefore, the scaling property that follows
from P (u) = (u/fi)* has far-reaching consequences. M 1997e is largely
devoted to studying them, yet makes no claim of coming close to
exhausting the topic.

Experimental measurement of the scaling exponent, and practical lack
of meaning of high values of o. The exponent a is typically measured on the
straight portion of a graph of o log Pr (U > u) versus log u. The discussion
that accompanies Figure 1 in M 1963¢ {E5} underlines that experimental
work should give little or no credence to high values of a. Such values are
entirely determined by observations for which the range of values of log u
is small, making it harder to ascertain the straightness of doubly
logarithmic graphs, and errors in o are far larger when o is large than
when o is small.

5.3. Wild Randomness and its Surprising Creativity

Stationary and scaling suffice to derive many facts from few
assumptions. Ex-ante, as already observed, they seem simple- minded. Ex-
post, they turn out to be surprisingly “predictive” or “creative”, in a sense
developed in Section 10 of Chapter E1 of M 1997¢ and elsewhere in this
book. Implemented properly and helped by the evidence of computer
graphics, they suffice to account for an extraordinary wealth of
complicated behaviors, all bound together in what will be described as a
“tightly organized phenomenology”. The surprising possibility of such
organization is essential from the viewpoint of “understanding”, and
Section 10 of Chapter 1 of M 1997e will argue that it is a second best to
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full explanation. This “creativity” is the second feature underlying the
fractal approach to finance, and expresses a mathematical possibility that
is central to every aspect of fractal geometry.

More specifically, the mathematical concept of stationary randomness
is far less restrictive than generally believed. Properly turned, it generates
structures whose richness is well beyond the power of Brownian and near-
Brownian randomness, which will be described as “mild”. That is,
stationary and scaling processes also extend to the very different forms of
randomness that will deserve to be described by the provocative term,
“wild”. What we shall see is that many of the observed facts that motivate
other writers to propose diverse “fixes” to Brownian motion (see Section 4
of Chapter E2 of M 1997¢) can also be accounted for by suitable forms of
wild randomness.

6. Fractals in Finance, Stage I the “M 1963 Model For Tail-driven
Variability and the “Noah Effect”

The M 1963 model assumes that successive price changes are
independent and highly non-Gaussian but stationary and scaling. In
practice, it adequately addresses price records in which the long-tailedness
of the changes is dominant, and their serial dependence can be studied as
a later and closer approximation. This situation turned out to be a good
approximation for commodity prices and other examples examined in M
1963b {E14} and M 1967] {E15).

Given a price series Z (1), write L (¢, T)=log ,Z (t+ T)—log Z (1).
The M 1963 model assumes that L (2. T') follows a probability distribution
called L-stable. When successive L (#, T) are independent, log L () 1s
said to follow a random process called L-stable motion (“LSM”). The
significant parameter is an exponent a; its range could be [0, 2], but in the
case of price changes, it narrows down to [1, 2]. Wiener Brownian motion
is the very atypical limit case of L-stability for o= 2.

The limitation to o <2 is a significant irritant. It makes L-stability
inappropriate for certain prices, and perhaps also for certain forms of
income investigated in M 1963i {Appendix IV to EI10}. Section 8§ will
show how a generalized model extends the range of o beyond 2.

6.1. The Original Evidence for the M 1963 Model: the Case of Cotton

Figure 4, which provided the earliest evidence, first appeared in M
1962¢, and was promptly reproduced with detailed explanations in M
1963b {E14}, then in many references including p. 340 of M 1982f
{FGN}. This original empirical test of L-stability used Pareto-style log-log
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scale of a-, b—, c- = negative changes of logarithm of price
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Figure 4

plots. Here is a description translated in slight paraphrase from M
1962¢.

“Denote by Z (¢) the spot price of cotton, namely, the price for
immediate delivery on day ¢.

“Curves a* and a- represent, for the period 1900-1904, the empirical
frequencies Fr {L (¢, T = one day) > u} and Fr {L (¢, T=one day) < —uj.

“Curves b* and b~ represent, for the period 1944-1958, the empirical
frequencies Fr {L (¢, T = one day) > u} and Fr {L (¢, T=one day) <—uj.

“Curves ¢* and ¢~ represent, for the period 1880-1940, the empirical
frequencies Fr {L (¢, T= one day) > u} and Fr {L (¢, T'= one day) <—u}.

“Both coordinates are logarithmic for all nx curves. To my
knowledge, the evidence concerning price variation has never been
presented in this way.

“Those various curves quickly become straight lines having the same
slope of approximately o = 1.7. Therefore, we can write

log [Fr {L (¢, T) > u}] ~—alogu +1log C" (T),
log [Fr {L (t, T) <—u}] ——oalogu+log CULTY,

“Thus Figure 4 suggests that the tails are asymptotically ruled by the
scaling distribution (see Section 5.2), with the same « exponent
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throughout. We also observe that C’# C”, which reveals a slight
asymmetry. The average value of L (¢, T') is practically zero.

“We see that a* is parallel to b*, and a~ is parallel to b™. This shows
that between 1904 to 1958 the distribution of L (¢, 1) did not change,
except for scale. There is also evidence (not shown here) that the
distribution of L (#, 1) changed little from 1816 to 1940. The fact that
curves a* and c* and a~ and ¢~ are parallel shows that the distributions of
L (¢, T'=one month) and of L (1, T = one day) are identical, except for a
change of scale.

“In a first approximation, the six curves displayed in Figure 4 can be
superposed on each other by horizontal translation, showing that the
distribution of L (¢,T') is L-stable under change of T. This feature will be
interpreted as a strong quantitative symptom of scaling”.

Deviations from exact superposition are full of meaning, as shown in
Chapter 14 of M 1997, both in the text which reproduces M 1963b, and
in Appendix III which reproduces M 1972b.

6.2. A Deviation from Invariance can be Significant Statistically, Without
being Significant Scientifically

As mentioned in Section 2, careful testing will doubtless show that
prices exhibit statistically significant deviations from stationarity and
scaling.

To elaborate, each scaling model of price variation claims to describe
properties that apply (up to size factors) to effects at short, middle or
longish time scales. Moreover, the M 1963 model involves one basic
parameter, o. Specific properties such as a probability of a given kind of
ruin can be evaluated, as seen in Section 3.2 of Chapter E6, and the
results can be affected dramatically by the value of c. Thus, in the range
around o = 1.7, the probability of ruin may be approximately 10, while
in the (Brownian) limit case o =2, it may be exactly 10-%. Now, what
about the actual a? By visual inspection, the cotton prices yielded o =
1.7, but one must expect that short, medium and longish time spans will
yield quantitative estimates of o that slightly differ from each other.
Hence, the above-mentioned probability of ruin may, in fact, differ from
10-1 by a factor ranging between 1/2 and 2, or perhaps even between 1/3
and 3.

My prudent vagueness about the value of o was criticized by P. H.
Cootner. | reported those reservations to William S. Morris, who had no
difficulty convincing me that the resulting uncertainty about the
probability of ruin pales into insignificance. There is a far greater
difference between the uncertain value of “approximately 10~ relative to
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o~ 1.7, and the certainly incorrect value of “exactly 107" relative to
o=2. It is fair to criticize the M 1963 model for being insufficiently
precise, but only after praising it for providing a correct order of
magnitude.

6.3. Beyond the M 1963 Model

Be that as it may, the M 1963 model was pointedly only meant to
account for certain prices. Given the messiness of the data, it would be
reckless not to fear that strict invariances are never encountered. But my
systematic policy is to first seek improved models that preserve and
generalize stationarity and scaling.

Sections 7 and 8 hope to convince the reader that this has been a
fruitful strategy. But Chapter E2 of M 1997e argues that a sensible person
should expect some features of the markets to contradict scaling. That is,
ad-hoc “fixes” or “touch-ups” may eventually become necessary. But, as
argued in Section 4 of Chapter E2 of M 1997e, those fixes must not be
applied to Brownian motion, but instead to a model that is already part
way to the truth.

7. Fractals in Finance; Stage II: the “M 1965 Model for Dependence-
driven Variability and the “Joseph Effect”

M 1963b {E14}, where the M 1963 model was first described,
specifically acknowledges the existence of serial dependence in price
changes, but the model itself approximated by postulating independence.
This attitude was criticized for many reasons. In particular, every form of
so-called “static” description is viewed as less desirable than a
“dynamical” one that promises to be a possible basis for both portfolio
management and conceptual understanding. I do not share this scorn for
statics, but moved beyond the M 1963 model in several steps. In a first
step, M 1965h {H} addressed records in which change is dominated by
global (long-run) dependence and the deviation of the margins from the
Gaussian can be studied separately and later.

The M 1965 model has a generic and specific aspect. Generic aspect: it
introduces infinite memory into statistical modeling. Specific aspect: it
introduces fractional Brownian motion (“FBM?), a process that has one
significant parameter: the Hurst or Hélder exponent H satisfying 0<H<1.
The Wiener Brownian motion WBM is the atypical special case
corresponding to the value H = 1/2. Early references on FBM are M &
van Ness 1968 {H} and the papers by M & Wallis {H}; the use of FBM in
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economics was pioneered in M 1970e, M 1971n, M 1971q, M 1972¢ and
M 1973j. Samorodnitsky & Taqqu 1944 (Section 7.2) is one of many
recent textbooks that discuss this process.

The original empirical test of long-run dependence, once again, used
Pareto-style log-log plots, but did not apply them to the tail distribution
but instead, to either the correlation or the spectrum. The latter take a
very characteristic scaling form, described as “1/f”, which is discussed in
M 1997e (Chapter E6), M 1997h and M 1997n.

7.1. Concrete Justification for the Idea of Infinite Memory, through the
Behavior of High-dimensional Systems, and a Metaphor from Physics

While FBM implies an infinite memory, it may be reassuring that a
model based on FBM need not imply belief in action at a distance.

Indeed, consider a very high-dimensional system (physical or
economic) that is Markovian when viewed in its full glory. Such a
system’s one-dimensional or few-dimensional coordinates need not be
Markovian at all. To think of them as following FBM involves no
paradox whatsoever.

A useful metaphor is suggested at this point by the statistical physics
of magnets. Infinite range dependence controlled by power-law
expressions is the rule in systems in which actual interactions only occur
between immediate neighbors, those systems must be of high enough
dimensionality and be observed under conditions that physicists describe
as “critical”.

Be that as it may, infinite memory in finance calls for explanation. It
also proved to require a new frame of thinking, but, to my delight, was
accepted more readily than infinite variance. To my knowledge, no writer
went as far as P. H. Cootner did, when (as quoted in the Introduction) he
described the M 1963 model as promising “blood, sweat and tears”.

7.2. Historical Digression: the Hydrology Connection

The intellectual path that led from LSM to FBM brings light on the
similarities and differences between the M 1963 and M 1965 models, and
therefore remains interesting. When I was a Visiting Professor of
Economics at Harvard and it became known that I was able to deal with
the “pathology” of price variation, I was flooded with examples of other
pathologies. Most proved beyond my skills, but two exceptional “hits” led
me far away from finance for a while.

In 1962, a pattern of very anomalous noise led to Berger & M 1963
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{NS5}, which implicitly introduces the notion of fracral time to which we
shall turn in Section 8.

In 1963, hearing of the “Hurst puzzle” of hydrology (Hurst 1951,
1955, Hurst et al. 1965), I identified it immediately as a new example of
scaling, and briefly believed that it required a straight replay of the M
1963 model. But this beautiful theory was soon demolished by a mere fact:
while LSM was the proper tool to deal with price variability driven by
long tails, yearly river discharges are not far from Gaussian. This led me
to conclude that the Hurst puzzle was driven by the accumulation of
variables that may even be Gaussian, yet exhibit serial correlation of
infinite time span. The form of infinity raises many questions, but they are
best discussed in Section 4 of Chapter E2 of M 1997e while tackling
ARMA representations.

7.3. The Widespread Confusion between the M 1963 and M 1965 Models

Such confusion occurs despite the sharp differences between the Noah
and Joseph Effects and the LSM and FBM processes. In the M 1963
(LSM) model, depending on which feature is singled out, fractal
dimension is either D=2~ l/a.or D, =o. In the M 1965 (FBM) model,
depending on which feature is singled out, fractal dimension is either
D.=2—-H or D.=1/H. Even a competent mathematician sees between
those two processes a number of parallelisms that some describe as
“mysterious”.

Help is on the way. Section 4 of Chapter E6 of M 1997e generalizes
the standard self-affine models further and presents the resulting family of
possibilities in very graphic fashion. As a result, order and simplicity are
restored, and confusion decreases.

The Noah and Joseph effects often coexist; this fact raises two issues.
The following subsection sketches an effective way to disentangle the two
effects” contribution to a given record, and Section 8 sketches a versatile
and effective way to build random processes that combine long-tails and
long-dependence in “tunable” proportions.

7.4. A Way to Disentangle the Noah and Joseph Contributions to a Record:
R/S Analysis of Global Dependence, and its Application in Finance

“R/S analysis” is concerned with the kind of global dependence that
the eye perceives as clear-cut cycles having no determined periodicity.
This statistical technique, very different from spectral analysis, originated
in the work on river discharges that is described in M & Wallis 1968, 1969



B. B. Mandelbrot: Three Fractal Models in Finance: Discontinuity, Concentration ... 197

a. b, ¢: see also M 1975h. This method started attracting wide attention, as
exemplified by Feder 1988, and is one of the main topics of M 1997h. The
details lie well beyond our scope, but it deserves a comment that
paraphrases M 1970e.

“It is obviously important to know whether dependence in price
change records vanishes, is positive or is negative. Unfortunately, the
empirical investigations disagree, and all are unconvincing, because they
invariably use statistical tools that imply that the underlying process is
nearly Gaussian. Before any statistical test of dependence is used, its
robustness with respect to infinite variance must be investigated. For this
purpose, M & Wallis proposed R/S analysis, and 1 used it on financial
data. It is not foolproof, in fact has not yet been extensively explored. But
it should be added to the classical tools and promises to provide more
applicable results. It measures the intensity of global R/S dependence by a
single parameter J.

“From the viewpoint of R/S, all independent random processes and a
variety of martingales behave identically in yielding J = 1/2. They can be
called “R/S independent”. A striking fact is that the notion of RIS
independence is robust with respect to infinite variance. In the case of
price changes, it can serve as a useful surrogate for market efficiency,
which is far from easy to handle statistically.

“Using R/S, 1 analyzed interest rate series reported by Macaulay
prices of commodities from various sources and series of daily and
monthly returns on securities. I found that different kinds of “price” series
fall into different categories.

“Certain prices, and also the rate of call money, exhibit global
persistence with, for example, an exponent of J=0.7. This result was
expected: since call money was itself a tool of arbitraging, its price cannot
itself be arbitraged to take advantage of inefficiency. Therefore, its
behavior should follow closely that of the various exogenous quantities
that affect the economy. There is strong evidence that economic time
series other than price changes (Adelman 1965, Granger 1966) and
various physical (e.g., climatic) triggers of the economy are globally
persistent, and the J observed for call money rates is typical of exogenous
economic quantities.

“At the other extreme, British Consuls, cash wheat and some
securities have R/S independent increments. The reason for this behavior
is unclear. The data may be dominated by what may be called “market
noise”. However, spot commodity prices are not subject to thorough
arbitraging. As a result, the absence of persistence in wheat is a puzzle. An
explanation may be sought in institutional features; the arbitraging that is
present in future prices may have an indirect effect on spot prices.
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“Intermediate cases that exhibit a small degree of global dependence
include prices of spot cotton and many securities. Closer investigations
showed in many instances that the observed R/S dependence is wholly due
to small price changes, which are both more difficult and less worthwhile
to arbitrage. Large changes are practically R/S independent, even though
they occur at highly non-independent (clustered) instants of time.

This and some of my other results leave many issues open. In
particular, it is questionable whether or not the actually observed
dependence is precisely compatible with efficiency. It is also unknown
why there are so many differences between different series, and so many
series in which the dependence is negligible”.

A warning: No less than spectral analysis, RIS is a delicate statistical
technique. There are rumors that the “Hurst’s exponent” has become well-
known in finance. However, recent developments reveal that R/S is an
even more delicate technique than I believed in the 1960s. It is essential to
use data that was not “prepared” in ways that unwittingly change them;
for example, the elimination of short-term fluctuations judged a priori to
be subject to their own rules may also eliminate the very non-periodic
“long cycles” that R/S analysis is meant to reveal and investigate. Details
are found in M 1997h, Selecta Volume H.

8. Fractals in Finance, Stage III: the “M 1967 and "M 1972 Models;
Trading Time and the “Noah-Joseph” Effect

We are now ready to perform the crucial task of combining the non-
Gaussian distribution of the M 1963 model with the dependence rule of
the M 1965 model. The task took time and was not easy. Therefore, while
this section is merely a preview of Chapter E6 of M 1997e, it is
unavoidably more technical than the rest of this paper.

“Fractional Lévy flight” is a tempting obvious combination of scaling
margins and long dependence. It is mathematically interesting, but fails to
fit the actual records. Thirty years ago, its inadequacy set me to search for
other broad methods in many different directions.

8.1. Uniform or Variable Hurst-Holder Exponents, the Distinction Between
Physical ( Clock) and Trading Time, and the Notion of Compound Process

The Noah-Joseph combination to be described now is sufficiently
general to include many important special cases: the B 1900 model, the M
1963 model without asymetry, and the M 1965 model. The key step is to
introduce an auxiliary quantity called trading time. The term is self-
explanatory and embodies two observations. While price changes over
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fixed clock time intervals are long-tailed, price changes between successive
transactions stay near-Gaussian over sometimes long time periods
between discontinuities. Following variations in the trading volume, the
time intervals between successive transactions vary greatly. This suggests
that trading time is related to volume, but testing this empirical relation
should be separated from an exploration of the model itself. Perhaps one
could save Brownian motion by allowing price change to be due to
extraneous impulses that are bunched in clock time.

To provide an alternative motivation of trading time, let us
summarize very informally some properties of existing models concerning
the “order of magnitude” of the price change Ax over a time increment
At. Since At is assumed to be small, we deal with local behavior.

 For the B 1900 model, Ax ~YAtr=A¢" The exponent is time
invariant and H = 1/2.

o For the M 1963 and M 1965 models, Ax ~At"™ or Ax~At¥,
respectively. The exponent 1/cc or H is again time invariant but = 1/2.

Unifractality versus multifraciality. Because their scaling exponent is
unique, the preceding models can be called uniscaling or unifractal. The
generalization to which we now proceed can, by contrast, be called
multiscaling or multifractal, because it consists in allowing the exponent to
depend on ¢, and to be chosen among an infinity of possible distinct
values.

Since we deal with local behavior of small A¢, large or small values of
H (1) express, respectively, that x (¢) varies slowly or rapidly near the
instant ¢ Trading time is an alterative way of thinking about this
variability of the exponent 7. One imagines that x () varies more or less
unformily in its own intrinsic time, but the latter varies non-uniformly in
clock time.

The preceding two comments should suffice for motivation. As a
strictly mathematical idea, every non-decreasing function 6 (7) of physical
time provides a formal representation of Z (1) as a compound process
Z ()= Z[6 (1)]. But the result will be a useless increase in complication,
unless special circumstances prevail. I took both Z(6) and 6 (¢) to be
scaling, namely self-affine. To be practical, the only case I examined thus
far is where Z(0) and 6 (¢) are statistically independent (see Section 9).
Specifically, I allowed Z () to be a Wiener or fractional Brownian
function, and 6 (7) to be a fractal or multifractal time. As was hoped, the
resulting generalization of Wiener Brownian motion provides a sensible
approximation to interesting data that combine long tails and
dependence. Let us take up the topic in historical sequence, which also
corresponds to increasing difficulty.
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8.2. Subordination and the “M 1967" Model: the “Symmetric M 1963"
Model is Representable as a Wiener Brownian Motion in Fractal Time

The simplest form of compounding was pointed out formally by H.
M. Taylor (Section 1 of M & Taylor 1967 {E21} and 1 went on to
interpret it concretely (Section 2 of M & Taylor 1967 {E21}). The
shortened form “M 1967 model” will be used. but it is not meant in any
way to distract from the merits of Howard M. Taylor.

The M 1967 concerns the special case where 6 (¢) is a random function
with  independent increments; for historical reasons, it is called
subordinator. The mathematical aspects of the notion of “subordination”
(due to S. Bochner) are discussed in several places in Feller 1950 (Volume
I1). It came to play an important role in many aspects of fractal geometry,
therefore the concrete aspects are discussed in detail in Chapter 32 of M
1982f {FGN}, where it is illustrated and interpreted in a variety of
contexts.

Specifically, M & Taylor 1967 takes price to be a Wiener Brownian
motion of trading time. In order for physical time to be a non-decreasing
self-affine function of trading time, it is necessary for the graph of ¢ (8) to
be the so-called Lévy devil staircase. This object is defined in Chapter 3 of
M 1982f {FGN}, as the simplest randomized form of a Cantor devil
staircase. The points where the staircase moves up form a “Lévy dust”
characterized by an exponent that is the dust’s fractal dimension, a
concept to be sketched in Chapter E6. Each discontinuity of the inverted
staircase corresponds to a step of the staircase and collapses a finite
interval of trading time into an instant of physical time. Conversely,
trading time followed as a function of physical time reduces to a series of
mutually independent jumps of widely varying size. Price followed as a
function of physical time also undergoes jumps.

Surprisingly, the above procedure simply reproduces the symmetric M
1963 model. The exponent o of the L-stable motion is “fed in” by
choosing a Lévy staircase of dimension «/2. (Some messy details will be
discussed momentarily).

Devil staircases are standard examples of self-affine fractals, a concept
described in Chapter E6 of M 1997¢. Therefore, a trading time ruled by a
devil staircase is called a fractal time. Section 4 of Chapter E2 of M 1997¢
mentions that Clark 1973 preserved subordination, but with a trading
time that is not fractal. M 1973c argued against Clark’s non-fractal
substitute, but never implied that M & Taylor 1967 {E21} said the last
word. Let us now proceed beyond.

A goal for generalizations of the M 1963 model: it is necessary to
correct its unrealistic prediction, that large price changes are statistically
independent ex-ante, therefore isolated ex-post. In the M 1967 model,
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Jumps with independent positions and amplitudes are inherent to the
definition of subordination. Unfortunately, such jumps are unacceptable
in the study of finance. Clear-cut bunching of large price changes is noted
in M 1963b {E14}, but could not be seriously taken into account until a
natural solution presented itself in the altogether different context of the
study of turbulence.

A stepping stone towards generalization of the M 1963 model. Since it
brings no new prediction or property, M & Taylor 1967 is best described
as providing a representation”. All too often. such formal representations
are mathematically important, but of limited practical interest. A glowing
exception, subordination opened the gates to generalizations to which we
now proceed. They are new, even from the mathematical viewpoint.

An easily described generalization of the M 1967 model, replacing the
Wiener Brownian motion by fractional Brownian motion. The result
combines long tails and long-range dependence. It is defined by two main
parameters: an o exponent that is twice the o exponent of the Lévy
staircase, and the H exponent of the subordinated B,,. Little is known
about it.

8.3. Compounding and the M 1972 Model: Wieber Brownian Motion of
Multifractal Time; the Turbulence Connection and the Paradoxical
Character of the Perception of Infinite Memory by the Ear and the Eye

The most direct replacement for subordination replaces fractal
trading time by a construct that is more general and more richly
structured (also, more complicated), called multifractal time.

The step from fractality to multifractality was first taken in my very
first full publication on turbulence, M 1972) {N14}, to which we shall
return momentarily. Today, every field takes this step near-automatically
at some point in time, following a general pattern advocated in Chapter
IX of M 19750 and in an entry on “relative intermittence” on p. 375 of M
1982f {FGN}. Broadly speaking, patterns that seem fractal in a first
approximation tend on a second look to be multifractal.

Returning to M 1972j {N14}, it ends (p. 345 of the original) with the
following words:

“The interplay .. between multiplicative perturbations and the
lognormal and [scaling] distributions has incidental applications in other
fields of science where very skew probability distributions are
encountered, notably in economics. Having mentioned the fact. 1 shall
leave its elaboration to a more appropriate occasion”.

The concept first introduced in M 1972j {N14} is a family of many-
parameter multifractal functions to be denoted by M(1). They are non-
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decreasing and continuous but non-differentiable. Their increments are
called multifractal measures, and Figure 5 reproduces part of the original
example in M 1972j {N14}. As is typical of the most interesting
multifractal measures, the corresponding integral M(r) is represented by a
graph that is monotone increasing but lacks the flat steps characteristic of
a devil staircase. It follows that the inverse of M(r) has no jumps; like
M(t), it is continuous but non-differentiable.

Originally, the increments of M (¢) were meant to model the gustiness
of the wind and other aspects of the intermittence of turbulence. An
earlier fractal model of gustiness assumed that the wind comes in sharp
isolated peaks. M 1972j {N14}, M 1974f {N15} and M 1974c {N16} put
forward a more realistic multifractal picture of the wind’s gustiness. After
a delay of fifteen years, experiments (largely performed or supervised by
K. Sreenivasan) confirmed the validity of that picture.

H T T T T T
40000 80000 120000 160000 200000 240000

Figure 5

In addition, however, Figure 5 reminded me instantly of something
entirely different, namely Figure 1 of M 1967j {E15}, which represents the
variance of cotton price increments over successive time spans. After a
long delay, this initial hunch proves to be an astonishingly good
approximation. It was not elaborated until recently and is published for
the first time in this book. The elaboration will, nevertheless, be called the
“M 1972” model. Thus, my theoretical views of turbulence in the wind
and the stock market were immediately and completely parallel.

Graphs analogous to Figure 1 of M 1967j {E15} are, of course, very
familiar in finance, and their ubiquity motivates the “patchworks of quick
fixes” called ARCH models, which are outlined and criticized in Section 4 of
Chapter E2 of M 1997e. In the fractal context, on the contrary, the same
resemblance immediately suggested a very different thought: a change in
trading time from fractal to multifractal may generalize the M 1963 model.
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Explanation, using acoustics, of the “unreasonable effectiveness” of
infinite-memory models in accounting for bursts. ARCH-type models
closely follow common sense. Even a casual look at diagram I of Figure |
shows that large price changes are clustered. It is natural to attribute this
fact to the presence of “high-frequency” serial dependence between price
changes over neighboring time spans. Low-frequency serial dependence at
a distance does not even come to mind.

On the contrary, my models start by accounting for very low
frequencies, but they also succeed in accounting for the perceived high-
frequency effects. Before we go on, we must establish that paradoxical
claim is not absurd. This is best done by injecting yet another physical
science connexion, namely, some phenomena called 1/f noises. Among
them, the first to come to mind is the derivative of FBM, simply because it
is Gaussian, but the most appropriate illustration a definitely non-
Gaussian phenomenon called “flicker noise”. As indicated by this name
(or alternative names like “frying” and “popping”), the human ear
perceives such a noise as a sequence of bursts separated by quicter
periods. Hence, the ear seems to inform the brain that it deals with an
“intermittent high-frequency phenomenon”. Unfortunately, attempts to
model this vague description failed. More importantly, the more objective
spectral analysis yields a different diagnosis: a smooth spectrum
concentrated in very low frequencies.

In a nutshell, the M 1972 model claims that the variance of L (t, T) 1s
a kind of flicker noise. As can be seen in M 1997n, I developed from 1964
to 1974 the technical know-how required to handle such noises, and the
goal of the developments to be described from now on is to apply this
know-how to finance.

8.4. From Scaling to Multiscaling: from Marginal Distributions that
“Collapse” to Long-tailed Distributions that Shorten under Averaging

Let us return to a sober examination of the marginal distribution of
price change. “Data collapse” is said to occur when L (¢, T) has the same
distribution for all values of 7, except for scale. This is predicted by the M
1963 model and observed in Figure 4. But other price series proved to
behave in a different and more complicated fashion (Officer 1972). For
them, the distribution of L (¢, T) is reasonably close to being L-stable for
small 7', but the tails become markedly shorter than predicted.

The psychological impact of those findings was surprisingly strong
among students of speculation. The consensus became that, as 7
increases, L (1, T) might eventually converge to the Gaussian, so that the
M 1963 model does not matter much. As to the “transient” behavior
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before the Gaussian is reached, it was to be handled by the ARCH-type
models, and/or other “quick fixes”.

No one could dispute that the observed drift is incompatible with the
combination of scaling with statistical independence of price increments.
Therefore, the presence of a drift means that it is necessary to face serial
dependence. The point is that this can be done using a multifractal
scenario developed from the above- quoted remarks in M 1972j {N14}.

This replacement led to the M 1972 model whose most striking
prediction is as follows. As 7'— 0, the distribution of L (z, T) becomes
increasingly sharp-peaked and long-tailed. Qualitatively, this prediction
matches the empirical evidence.

A technical illustration of drift away from collapse. A key feature of
multifractality concerns the scale factors o (g) = {E [L* (t, DI}, In the
fractal case, the scale factors for ¢ < o are powers of 7, with an exponent
independent of g, which is why this case is called unmiscaling. In the
multifractal case, to the contrary, the exponents of the scale factors
depend on ¢, which is why this case is called multiscaling.

A useful mental picture is suggested by the limit lognormal
multifractals introduced in M 1972j {N14}. The picture consists in a
sequence of lognormal variables A such that EA;= 1, while log A is
characterized by an increasing variance 2. The probability densities p_ (1)
of those A, cannot be collapsed by using linear transformation. The M
1972 model predicts that the same is true of the distributions of L (¢, T)
for different T. The resulting drift is slight if the exponent of the scale
factor s (¢) = {E[L4(t, )]} increases little and slowly as with g — eo.
But the drift’s intensity can be “tuned” at will.

The careful reader may observe that, while the lognormal probability
densities p_(u) cannot be collapsed linearly, the corresponding
expressions log p_ (u) are easy to collapse. This observation is pretty much
all there is to the multifractal function f (¢) to be mentioned in Section 3.9
of Chapter E6 of M 1997e.

An alternative scenario behind the drift away from data collapse. The
long term dependence characteristic of multifractals implements the
following scenario, which I often heard mentioned, but do not recall
seeing in print. In the case of statistical independence, a price increment of
small probability p cannot be observed, unless the sample is at least equal
to a few times 1/p. But suppose that larger changes of L (t, T) are strongly
clustered for all values of T. If so, a price increment of probability p can
only be observed on a sample containing any more than 1/p roughly
independent values. A shorter sample should be expected to include far
too few values in the tails.

When a sample for t=0to r=1¢_, is examined for increasing values of
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T, the sample size ¢ /T decreases. Therefore, as T grows, the probability
of hitting upon large deviations decreases. So does the histogram’s tail.

8.5. Simulation of the Multifractal M 1972 Model, and Empirical Tests

As mentioned in the Preface, those tests were neither prompt, nor
complete. Before they are described, it is good to restate a basic point
already made in Section 2. The eye tells us that the behavior exemplified by
Figure 1 is mimicked reasonably in Figure 2. We can now add an
explanation: each line of Figure 2 is a separate implementation of a very
simple “surrogate” to the M 1972 model — as explained fully in Section 4 of
Chapter E6. “Fine tuning” the surrogate algorithm also tunes the output.

As to quantitative comparisons, I am overcommitted, and at present
lack any competitive advantage in handling financial data. However, an
exploratory study of foreign exchange rate changes is extremely
promising. The results will be sketched in Chapter E6, after some
technical tools are described. Full details will be published in free-standing
form in M, Fisher & Calvet 1997, Calvet, Fisher & M 1997 and Fisher,
Calvet & M 1997.

9. Beyond all the Models Described in This Book

Flaws of the preceding models should be immediately acknowledged.

Independently of whether fractional Brownian motion is followed in clock
of multifractal time, its increments have a symmetrical distribution. Therefore,
the M 1965, M 1967, and M 1972 models do not apply to cases where the
distribution is clearly asymetric, for example to cotton price changes.

The compound process in Section 8 assumes independence between
trading time as function of clock time and price as function of trading
time. It will be nice to go beyond independence.

For the above reasons and others, the M 1972 model does not claim
to be the last word. In fact, my investigation of the combination of long
tails and long dependence also tried out two very different approaches
that remain little explored and may reward a fresh look.

M 1966b {E19} describes an interesting and surprisingly realistic form
of rational market “bubbles”. The key is a form of arbitraging whose
input has short tails and long dependence, while its output is a martingale
with long tails and remaining long dependence.

The “fractal sums of pulses” {FSP} processes are described in M
1995n and several papers I co-authored with R. Cioczek-Georges, listed in
the Biography of M 1997e. The FSP are used in Lovejoy & M 1985 {H}
to simulate the shapes of clouds, and also show promise in finance.
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