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4. The Many Faces of Scaling: Fractals,
Geometry of Nature, and Economics

Benoit B. Mandelbrot

This paper brings together diverse topics from several arcas of mathematics
and science. These areas are reputed to be totally unrelated to each other, yet
my investigations show them to be akin in one way at least: all of them gain
greatly from the application of the same very versatile device or principle,
scaling. The links that result from this commonality of mathematical structure
are striking and surprising.

Science became acquainted with scaling through Richardson’s picture of
turbulence, but I believe I was the first to apply this idea elsewhere, for exam-
ple in linguistics (1951 on), economics (1959 on), noise theory (1963 on),
neurophysiology (1964 on), hydrology (1965 on). Starting with investigations
of geomorphology (1967 on) and turbulence (1967 on), my work has become
increasingly geometric. The scaling methods in the analytic physics of critical
collective phenomena (Kadanoff’s work of 1967 and renormalization groups)
arose quite independently but now find numerous uses for my scaling geome-
try. Being expository, this paper freely incorporates paragraphs from my
book, Fractals: Form, Chance, and Dimension, and my other publications,
See also my more recent book, The Fractal Geometry of Nature.

GEOMETRY OF THE IRREGULAR

The best is to begin with comments on the bottom half of the combined figs.
4.1and 4.2. My point is that fig. 4.1 does not represent what 1 hope you think
it might represent; with due apologies to Mr. Baedeker and his heirs and com-
petitors, this is not a landscape on the earth, the moon, or any other planet,
but an example of fractal surface contrived and computer generated deliber-
::m:ly to mimic a landscape. The program, the product of Richard F. Voss,
implements the mathematical model I propose for the Earth’s relief.

BE'_‘Uil B. Mandelbrot is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York.
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Figs. 4.1 and 4.2. Graphics courtesy of Benoit B. Mandelbrot © 1977 from the back
jacket of his book FRACTALS: FORM, CHANCE, AND DIMENSION, W. H. Free-
man and Company, San Francisco, 1977,
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The two significant parameters are a real number D lying between 2 and
3 and the seed of a pseudorandom subroutine. This D is the fracral dimension
of the surface. In fig. 4.1, in order to ensure the resemblance that I hope you
have perceived, the suitable value had to be D = 2.2500. Had we picked a
different D, the resulting surface would have been different in form.

What is really meant by form? The question is vital in many sciences,
but it is far from having been answered satisfactorily. If we were to trust our
mathematical friends blindly, we would interpret form as that which is studied
by topology. Such would have been the case if topology were actually devoted
to the task suggested by the etymology of its name. Unfortunately, the con-
tents of this branch of mathematics is such that in the present case we would
be sorely disappointed. Indeed, at least in principle, the surface in fig. 4.1 can
be obtained from a square without a tear, using a one-to-one continuous trans-
formation, and this property defines it as being topologically a square. The
surfaces corresponding to the same algorithm but different values of D are
also squares from the topological viewpoint; nevertheless their form depends
greatly upon the value of D. When D is close to 2, they are smoother in detail
and less flat overall than when D is close to 3 as seen on pages 210 to 215 in
my book, Fractals: Form, Chance, and Dimension. (The back of the book’s
jacket reproduces the present combined figs. 4.1 and 4.2.)

Fig. 4.2 offers a further example of the limitations of topology. Again,
its point is that it does not represent what 1 hope you think it might represent:
it is not a line version of the photograph of a planet, but the projection (upon a
tangential plane) of the surface of a sphere on which a curve was drawn by a
computer, again the work of Richard Voss using an algorithm I supplied. To-
pologically, this curve can be obtained by deforming a collection of a few cir-
cles by a one-to-one continuous transformation. Therefore this drawing is to-
pologically a collection of circles, but this feature accounts for only a small
part of the whole truth. There ought to exist some mathematical way of ex-
pressing the obvious: between a collection of circles and the curve you see
here there is, again, a profound difference in form. Furthermore, a second
and more careful look at fig. 4.2 leads you to conclude that it is not quite
Earth-like. The curves you see are markedly too wiggly, too complicated to
represent the contours of Earth’s continents.

The fact that very irregular shapes are often encountered in Nature re-
quires little elaboration. They never tire of exciting the layman’s imagination,
but science has failed to tackle them. Does it follow from the inappropriate-
ness of topology that the degree of wiggliness must remain an intuitive no-
tion, that is, a notion inaccessible to mathematical description? The answer is
a resounding no. It turns out that mathematicians had long ago taken steps in a
direction I later saw pointed towards a geometry of irregularity. For example,
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the degree of local irregularity of a surface or of any other set is measured by
its Hausdorff-Besicovitch dimension D. This notion, however, is only rarely
called upon in mathematics, and it failed completely to draw the attention of
scientists. Applications in the sciences, and the very idea that (in the case of
certain geometric shapes) D can also be used to quantify an aspect of form,
did not come out until my papers that eventually led to my book Fractals.

Originally, the above D was geared towards the study of sets that had
been designed as standards of irregularity, most notably by George Cantor and
Giuseppe Peano. Some among you may be aware of the reputations of Cantor
and Peano, of being unsurpassed champions of mathematics as a form of art
for art’s sake. If you know them in this light, you must be surprised at hearing
their names in the context of natural science, so let me elaborate. The great
mathematicians active during the period 18751922, which witnessed a deep
crisis in pure mathematics, introduced many sets intended solely to prove
that, in comparison to the concepts of the old mathematics, those of modern
mathematics were of increased generality. Such sets, however, were never
meant to be applied in science. In fact, both the creators and their followers
were unanimous in considering them as *‘pathological” and as “‘monsters.” |
claim that they were mistaken, that these specific sets can also be given an-
other and very different sort of use, as models of the irregularity and fragmen-
tation in nature. Far from being pathological, they possess features that turn
out to be by far closer to certain aspects of nature than the geometry on which
all of us have been brought up, that of Euclid. Their usefulness is linked to the
fact that they have something deep in common with Brownian motion. To-
gether, these various sets are examples of a class of sets that I have proposed
to call fractals, and they are the topic of the book to which I have already
alluded.

To summarize this book here would be foolish, but 1 would like to take
this opportunity to sketch some leading ideas, and to point out the profound
conceptual link that exists between my current work, which is devoted to the
mathematics of fractals and to the geometry of nature, and my earlier work on
the temporal behavior of commeodity and security prices. The link between
my topics is the fact that all three rely in an essential fashion upon the notion
of self similarity and on other forms of scaling.

THE SCALING PRINCIPLES OF MATHEMATICAL
AND NATURAL GEOMETRY

The largest and most complicated of the five diagrams that make up fig. 4.3 is
the composite of two wondrous and many-sided broken lines, each devoid of
self-contact. They are drawn by a computer instructed by Sigmund W. Han-
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Fig. 4.3

delman. 1 am tempted to call them teragons, to take advantage of the original
basic meanings of the Greek word reras, teratos, “‘a wonder or a monster,”
and of the use of fera in the metric system as the prefix to designate the very
large number 10'%. One of these broken lines is so violently folded upon itself
as to give the impression that it attempts a monstrous task for a curve: to fill
the interior of the second teragon. This impression was intended and is quite
justified, since indeed the teragon in question is an advanced stage of the con-
struction of a space-filling curve. By way of contrast, the second curve can be
called a wrapping.

The first space-filling curve was discovered by Peano in 1890 and many
others followed in the next twenty-five years.

The present new illustration is inspired by Helge von Koch, who had the
pioneering idea (first implemented in his snowflake curve) to seek curves with
the property of being precisely as complicated in the small as in the large. His
motivation was purely mathematical: he was seeking curves without tangent,
that is, such that the direction of a cord joining two points has no limit as these
points converge to each other. To achieve this goal, the simplest was to de-
mand that this cord fluctuate exactly as much in the small as in the large.
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It is easy to restate this goal from mathematical into physical terms.
Koch wanted the fine details seen under the microscope, whatever the magni-
fication, to be the same (scale aside) as the gross features seen by the naked
eye. Using a different vocabulary, he wanted the fine details seen on a very
precise map to be the same as the gross features seen on a rough map. Some
such concrete interpretation of Koch’s procedure has often inspired me in em-
pirical work. Hence the following guiding principles:

A) SCALING PRINCIPLE OF NATURAL GEOMETRY. To assume that small
and large features are identical except for scale is often a useful approxima-
tion in science.

B) SCALING PRINCIPLE OF MATHEMATICAL GEOMETRY. To limit oneself to
sets wherein small and large features are identical except for scale is often a
convenient procedure in geometry.

Part of my work consists in viewing B as having®provided a collection of
answers without questions and in setting them to work on the questions with-
out answers summarized under A.

The only fairly wide justification for A is that any sum of many effects
satisfying a “central limit theorem” is scaling. This statement is, of course,
too loose to be provable, yet a prudent addition of natural assumptions makes
it into provable theorems or plausible conjectures. But this central limit argu-
ment is seldom persuasive by itself.

EXAMPLES OF FRACTAL SHAPES

To implement the goal we have stated in his way and in mine, Koch proceeds
step by step. Select an initiator set and a generator set, the former often an
interval or an open or closed polygon. The first construction stage replaces
each side of the initiator by an appropriately rescaled and displaced version of
the generator. Then a second stage repeats the same construction with the
polygon obtained at the first stage, and so on.

The early stages of the constructions shown on fig. 4.3 are illustrated by
the four small diagrams of this figure, to be followed clockwise from left cen-
ter, in order of increasing complication. The initiators are a unit square for the
wrapping, and a side of this square for the filling. The generator of the filling
is an irregular open equal-sided pentagon. This pentagon does it best to fill
the square. (Indeed, one perceives an underlying square lattice of lines 1/V'5
apart, and our original filling passes through every lattice vertex contained in
the original wrapping.) In the next stage of the construction, each side of the
pentagon is replaced by an image of its whole reduced in the ratio of 1/V/5.
The result no longer fits within the square, but it fills uniformly the crosslike
shape obtained by replacing each side of the square by the wrapping genera-
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tor, which has N=3 sides of length r=1/V5. The same two constructions are
then repeated ad infinitum in parallel. A designer who zooms in as the con-
struction proceeds will constantly witness the same density of filling, but one
who stays put sees a curve that fills increasingly uniformly a varying wrap-
ping whose complexity keeps increasing.

The Peano curves which mathematicians designed during the heroic pe-
riod up to 1922 all filled a square or a triangle, but the present construct—like
the dragon curve of Heightway and Harter and a curve due to Gosper—in-
volves more imaginative boundaries.

Fig. 4.4 carries the construction of the two curves of fig. 4.3 one step
further and presents the result in a different light. The filling is now inter-
preted as the cumulative shoreline of several juxtaposed river networks, and
the wrapping as the combination of a drainage divide surrounding these net-
works and of a portion of seashore. (To build up the network, one proceeds
step by step: (1) Each dead-end square in the basic underlying lattice—de-
fined as such that three sides belong to the filling teragon—is replaced by a
short stream from its center beyond the open side. After that the dead-ends

Fig. 4.4
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are cut off. (2) Then one proceeds in the same fashion with the straightened
teragon. (3) And so on until the filling is exhausted.) In this light, the wrap-
ping becomes reinterpreted as the juxtaposed network’s external drainage
divide.

To use an old sophomoric line, after you think of it imaginatively, care-
fully, and at great length, it becomes quite obvious that a river network’s shore
gives an idea of the structure of a plane-filling curve. The converse is also
true, except of course that the present network is much too squarish to be
realistic. Much better-looking ones are given in my book, but the basic idea is
present here. You may say that the present network resembles a bonsai tree.

To sum up, the mathematicians who tell us that Peano curves are totally
nonintuitive are mistaken. To be charitable, let us students of nature accuse
them of having tried to prevent us from knowing of a beautiful new tool and
applaud their skill in succeeding in holding to it exclusively for so long.

THE NOTION OF FRACTAL DIMENSION

It is easy o see that each stage of a Koch construction multiplies a polygon’s
length by a fixed factor Nr>1; hence the limit curves obtained by pursuing the
constructions of fig. 4.3 ad infinitum are of infinite length. Furthermore, it is
tempting to say that the filling is “much more infinite” than its wrapping, be-
cause its length tends to infinity more rapidly. This intuitive feeling is ex-
pressed mathematically by the notion of fractal dimension, to which we have
alluded repeatedly; the notion was formed by Hausdorff and was perfected by
Besicovitch. The explanation of the underlying idea begins with the very sim-
plest shapes: line segments, rectangles in the plane, and the like.

Because a straight line’s Euclidean dimension is 1, it follows for every
integer vy that the “whole” made up of the segment of straight line 0=x<X
may be “paved over” (each point being covered once and only once) by N=+y
*parts.” These parts are segments of the form (k—1)X/y=x<kX/vy, where k
goes from 1 to y. Each part can be deduced from the whole by a similarity of
ratio r(N)=1/N. Likewise, because a plane’s Euclidian dimension is 2, it fol-
lows that, whatever the value of v, the “whole” made up of a rectangle
0=x<X; 0=vy<Y can be “paved over” exactly by N=-? parts. These parts
are rectangles defined by (k—1)X/y=x<kX/y and (h—DX/ysy<hY/ly,
wherein k and A go from | to y. Each part can now be deduced from the whole
*by a similarity of ratio r(N)=1/y=1/N"2. Finally, in spaces whose Euclidean
dimension is E>3, a D-dimensional parallelepiped can be defined for any
D=E, and we see that in all the classical cases, the dimension satisfies

D=—log N/log r(N)=log N/log (1/r) .
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Now observe that the exponent of self-similarity continues to have for-
mal meaning for some shapes which are neither a segment nor a square. The
main requirement is scaling: the whole may be split up into N parts deducible
from it by self-similarity having the ratio r (followed by displacement or by
symmetry). Such is precisely the case with the limits of our teragons in fig.
4.3. For the wrapping, we see that N=3 and r=1/V'5, hence

D=log3/logV'5=log9/log5=1.3652
For the filling, we see that N=5 and r=1/V'5, hence
D=log5/logV5=2 .

Thus, the impression that the filling is “more infinite” than its wrapping is
confirmed and quantified by the inequality between their dimensions. The im-
pression that the filling really fills a plane domain is confirmed and quantified
by its dimension being D =2.

The preceding argument may seem overly specialized, so it may be com-
forting to know (a) that fractal dimension can be defined using alternative
methods of greater generality and full rigor and (b) that the result behaves like
the old-fashioned one in many other ways. For example, consider the notion
of measure. If a set is self-similar and measure is taken properly, then the
portion of this set that is contained in a sphere of radius R is of measure R®.

This leads us to a mathematical definition I gave: a fractal set is defined
as being a set such that the above D—or the dimension yielded by the more
general and intrinsic methods of Hausdorff and Besicovitch—is greater than
the topological dimension—or the intuitive dimension. The wrapping in fig.
4.3 is a curve of topological dimension |; hence it is a fractal curve. The pro-
totypical stochastic fractal is Brownian motion in a plane or a higher space:
indeed it is topologically a curve of dimension 1, but it is fractally of dimen-
sion 2. Its coordinate functions, such as X(t), are curves of topological di-
mension 1 and fractal dimension 3/2. Paul Levy has generalized the Brownian
function to functions from a multidimensional “time,” say (x,y), to a scalar Z.
If Z is interpreted as an altitude, such a function represents a landscape; it is
of fractal dimension D=35/2. Finally, one can preserve scaling while chang-
ing its specific rule (that is, its D) by performing a certain operation (which
no longer deserves to be viewed as exotic) called Riemann-Liouville frac-
tional integration. If one starts with a Brownian Z(x,y) and the order of inte-
gration is 1/4, one obtains the surface shown in fig. 4.1, which in technical
terms is described as a fractional Brownian surface of dimension D =2.2500.
It brings us back to our point of departure, and we can proceed to other tasks.
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ON TO ECONOMICS

To sum up, by showing that the kin of the fabled Cantor and Peano monsters
are indispensable in modeling the geometry of nature, 1 hope to have trig-
gered an unexpected encounter between the mathematicians enamored of art
for art’s sake and those who celebrate nature by trying to imitate it. The re-
union was soon joined by a different and unexpected crowd, a large one.
While I was identifying scaling structures in the fractal geometry of nature,
physicists concerned with a variety of collective phenomena were indepen-
dently identifying scaling structures in analytic physics, that is, the main-
stream physics which expresses its results in formulas rather than in shapes.
We soon met, and scaling geometry was promptly injected into the study of
collective phenomena.

Where does this leave economics? All too many economic models merely
translate into a different language some of the mathematical material of phys-
ics, but there are at least two exceptions, one old and one recent.

The old exception hinges on the historical fact that the first scholar to
describe the Brownian motion process of independent Gaussian increments
was not a physicist. He was Louis Bachelier, whose 1900 Ph.D. was granted
(reluctantly) by a committee of mathematicians, but who viewed himself pri-
marily as a student of economic risk. The economic modelers of the 1900's
remained unaware of Bachelier’s existence, and their heirs in the 1960’s re-
discovered the Brownian model in books of physics; but the history of ideas
will remember that physicists were second to this front, five unquestionable
years after a mathematical economist.

Around 1960 we witnessed a second instance of a principle of model
making being used in physics several unquestionable years after it had been
used in economics. To further the resemblance with the Bachelier episode,
this principle did not originate with a professional economist but with the au-
thor of these lines—and (as has already been said) the physicists reinvented it
when needed, without my help. A distinct difference from the Bachelier epi-
sode is that my work did not remain isolated, but merged into my later work
on fractals and the geometry of nature. Hence, when the inevitable comes and
an economist decides to look at collective phenomena of physics for inspira-
tion in economic modeling, he will find that part of the work has already been
done without reference to physics.

One often hears that economic models tend to involve so many param-
eters that an exacting empirical confirmation is impossible even in principle.
In fact, the data that concern commodity and security markets are so plentiful
one can drown in them. Bachelier had the brilliant idea that the first task for
the student of economic risk is to examine phenomena for which data could
readily be collected.
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Thus, when Bachelier’s day finally came in economics (sixty years after
his Ph.D. and fifteen after his death), one could actually test whether he was
right or wrong. Many a putative model is such (in structure or number of pa-
rameters) that no amount of evidence could prove it to be wrong, and Karl
Popper tells us that such nonfalsifiable constructs are not acceptable as scien-
tific models.

Sad to report, Bachelier's Brownian motion model is contradicted by the
evidence. On the other hand, a more general idea of Bachelier’s, called “effi-
cient market hypothesis,” proves remarkably fruitful; in particular, it implies
that no mechanical trading procedure can be a winning one.

THE DISCONTINUITY OF PRICES

The simplest anti-Bachelier argument is based on the following experimental
observation, which is unsophisticated but fundamental. Brownian motion’s
sample functions are continuous. Prices on competitive markets, however, are
not continuous. The principal (or perhaps only) reasons for assuming continu-
ity are that it was a marvellous success in mechanics and that diverse ex-
ogenous quantities and rates that enter into economics but are defined in
purely physical terms must necessarily be reasonably close to being continu-
ous. Prices, however, are different. The typical mechanism of price formation
involves both knowledge of the present and anticipation of the future. Even in
the cases where the exogenous physical components of a price are constrained
to vary continuously, anticipations can and often do change drastically in a
flash. A physical signal of negligible energy and duration, “the stroke of a
pen,” may provoke a brutal change of anticipations. When this happens with-
out institutional constraint and inertia to complicate matters, a price deter-
mined on the basis of anticipation can crash to zero or soar out of sight; it can
do anything.

Can this observation be of any predictive value? To show that it is, Jet me
retell the history of the rise, fall, and burial of a briefly famous method of
trading using “filters” (Alexander 1961). A p percent filter may be defined as
a device that monitors price continuously, records all the local maxima and
minima, gives a buy signal when price first reaches a local minimum plus ex-
actly p percent, and gives a sell signal when a price first reaches a local max-
imum minus exactly p percent. Actually, Alexander monitored the sequence
of daily highs and lows of the index. He assumed that if an earlier day’s low
plus p percent was exceeded for the first time by the high on day d, then at
some time during the day d, the instantaneous price was exactly equal to said
low plus p percent—thus provoking a buy signal. The process was similar for
sell signals. The assumption that a price record can be handled like a continu-
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ous function seemed to Alexander too obvious even to be mentioned. The em-
pirical conclusion is that to follow a filter's buy or sell signal is very much
more beneficial than to “buy and hold.”

I found (Mandelbrot 1963, p. 417) that there is a gap in this argument.
Indeed, even on days when price variation seems reasonably continuous, its
continuity is the result of deliberate action by a market specialist performing
his assigned function of matching buyers and sellers and of ensuring the conti-
nuity of the market by buying or selling from his holdings. The specialist cre-
ates bargains reserved to friends, while most customers have to buy at the
next higher price. In either case, the advantages of filter trading, as computed
according to Alexander, are overstated. Since my theoretical and experi-
mental studies (to be described momentarily) make me hold that price is dis-
continuous except for institutional lags or “inertias™ that can have only a lim-
ited effect, 1 predicted that a recheck would show the advantage of filter
trading over buy and hold trading to be largely or wholly spurious. Alexander
1964 found my prediction to be correct, and the method of filters to be no
better than “buy and hold.” I had killed this method. Fama and Blume, 1966,
carried out a thorough “post-mortem” check using individual price series; the
method of filters is now buried for good.

Winning martingales resemble perpetual motion machines. It is to the
credit of Bachelier’s efficient market hypothesis that it had predicted well in
advance that filters should not work, but to the discredit of Bachelier’s Brown-
ian motion model that it could not explain why filters seemed to work. There-
fore it is to the credit of my specific models that they permit an analysis and
pinpoint the flaws present in diverse paths to sure wealth.

THE SCALING PRINCIPLE OF ECONOMICS

The failure of Brownian motion as a model of price variation elicited two very
different responses. On the one hand, there is a plethora of ad hoc statistical
“fixes.” When faced with a statistical test that rejects the Brownian hypoth-
esis, try one modification after another until the test is fooled. A popular fix is
censorship, hypocritically labeled “rejection of outliers.” It consists of distin-
guishing between ordinary small price changes and large price changes that
defeat Alexander’s filters. This traditional fix is effective in analyzing astro-
nomic observations, but this is not an appropriate precedent. Large astro-
nomic errors are traceable to equipment problems, can be corrected, and are
not of intrinsic interest. Large price changes, on the contrary, are at the heart
of the hopes or fears of participants in competitive markets. A second popular
fix is to postulate that data are a mixture: if X is not Gaussian, maybe it is
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a mixture of Gaussian variables. Yet another fix is transformation: if X is
positive and non-Gaussian, maybe logX is Gaussian; if X is symmetric and
non-Gaussian, maybe tan *'X will fool the test. Yet another fix consists in pro-
claiming that price follows a Brownian motion whose parameters vary uncon-
trollably. By design, a fix can never be falsified, hence (remember Karl Pop-
per’s views) it cannot be a scientific model.

At the opposite of the fixes stands my own work. The basic principle was
first used to tackle income distributions, and it applies to diverse data of eco-
nomics, but is best expressed in the context of prices.

SCALING PRINCIPLE OF PRICE CHANGE. When X(1) is a price, log X(1) has
the property that its increment over an arbitrary time lag d, log X(1+d) — log
X(t), has a distribution independent of the lag d, except for a scale facior.

Before exploring this principle’s consequences, let us run through a
checklist of properties.

A scientific principle must yield predictions that can be checked against
the evidence. This one does so, and the fit is very good.

It is important for scientific principles to be reducible to other theoretical
considerations in their fields. In this instance, the only explanatory argu-
ments, Mandelbrot 1966, 1971, view it as the consequence of the scaling
property of exogenous physical variables. These arguments are much less
well established than the result they purport to justify.

Finally, even when no actual explanation is available, it is pleasant if a
scientific principle does not actually clash with earlier presuppositions. The
present scaling principle seems innocent enough—if only because the ques-
tion of scaling had not previously been raised, so that contrary opinions could
not be expressed. All that scaling seems to say is that in competitive markets
no time lag is really more special than any other, that is, the obvious special
features of the day and the week (and the year in case of agricultural commod-
ities) are compensated or arbitraged away. While all the usual fixes of the
Brownian motion involve privileged time scales, my principle affirms that
there is no sufficient reason to assume that any time scale is more privileged
than any other.

However, we want the actual implementation of the scaling principle to
be distinct from the standard result, which of course is Brownian motion. To
achieve this, it is necessary to clash violently with earlier statistical supposi-
tions, by postulating that price changes have an infinite variance. This is a
possibility that every other investigation of the topic excludes from the outset.
Before my papers, it seemed a perfectly innocuous step to write “denote the
variance by V.” To demonstrate that infinite variance has significant and de-
sirable consequences was a major step I took around 1960. Later, it inspired
my investigations of fractal geometry, where it is essential to allow curves to
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have infinite length and surfaces to have infinite area, while the usual assump-
tions combined with scaling bring us a trivial conclusion: back to standard
Euclidean lines, planes, and so forth.

THE INFINITE VARIANCE SYNDROME

One must question the finiteness of the population variance of log price be-
cause of diverse problems encountered by the use of typical values, which is
the least sophisticated level of descriptive statistics but is far from being harm-
less. In order to summarize tables of frequencies, it is customary to use sam-
ple averages to measure location and sample root mean squares to measure
dispersion. The former ordinarily raises little question in economics, as sam-
ple averages tend to vary little between samples. Mean squares of prices, to
the contrary, prove extraordinarily elusive:

(A) Values corresponding to different long subsamples of the same price
change series differ to the extent of having different orders of magnitude.

(B) As sample size gradually increases, the mean square fails to stabi-
lize. It goes up and down, with an overall tendency to increase.

(C) The mean square tends to be influenced predominantly by a few of
the squares being averaged, sometimes a single one.

These properties suggest that the unknown theoretical second moment is
very large. When this moment is finite but huge, sample moments will even-
tually converge to it, but so slowly that the limit matters very little in practice.
The alternative possibility that 1 put forward is that the theoretical mean
square is infinite. Between very large and infinite, there is no difference one
could detect through available sample moments. Also, of course, the fact that
a variable X has an infinite variance in no way denies that X is finite with a
probability equal to 1. For example, the famous (or infamous) Cauchy vari-
able, whose probability density is 1/mw(1+x?), is almost surely finite but has
an infinite variance and an infinite expectation. Thus, the choice between
variables with extremely large finite and infinite variances can be decided on
theoretical grounds: the latter is the more convenient to handle and we shall
see it can accommodate the desirable scaling property.

Now let us move from moments to the next more sophisticated level of
statistics. Mere curve fitting is notoriously controversial, in fact unavoidably
so, since the quality of fit is a compromise between subjective simplicity of
the fitting function and the largely arbitrary procedure used to measure the
discrepancy between theory and data. Moreover, the study of price incre-
ments must deal at the same time with days, weeks, months, and (sometimes)
years. One has no right to fix them separately, and there is no reason to expect
the best-fitted monthly change to be the same as the sum of best-fitted daily
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changes. In all such cases, one must choose between fitting each category of
data independently using distributions that are likely to be discordant and fit-
ting all the categories simultaneously using a set of distributions that form an
organized system. I view an organized system of fit as valuable. It is com-
monly used to buttress the Gaussian distribution, but in fact it is only an argu-
ment in favor of scaling.

Let us now review Bachelier’s three steps towards his unacceptable
Brownian motion model. They were (a) the efficient market idea, which is
excellent; (b) the idea that successive price changes are independent with van-
ishing expectation, which is a very good approximation; and (c) the idea that
price change variance is finite, which seems so obvious that is not even stated
explicitly. From (b) and (c), application of the only central limit theorem
known in 1900 led Bachelier to conclude that price follows a' Brownian mo-
tion, thus proving the scaling property as a corollary.

STABLE DISTRIBUTIONS

The procedure in Mandelbrot 1963 is to use this last corollary as an assump-
tion, replacing (c). In this context, a discussion of scaling begins by observing
that, when G’ and G" are independent Gaussian random variables, with zero
mean and mean squares equal to o’? and 0%, the sum G’ + G" is also a Gaus-
sian variable, with zero mean and a mean square equal to ¢’ + ¢"2. In partic-
ular, the reduced Gaussian variable, defined as having zero mean and unit
mean square, is a solution to the equation:

s'U + s"U = sU, ()]

where the scale factor s is a function of the scale factors s’ and 5", being given
by the auxiliary relation:

st=g"2 4 5", (A)

Equation (S} has other solutions, however; for example, the Cauchy vari-
able satisfies (S) combined with the auxiliary relation

s=s+s". (A)

More generally, given D satisfying 0<<D<2, equation (§) can be com-
bined with the auxiliary relation

5P =52 4 57, (Ap)
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The symmetric solutions of (S) and (A,) have the characteristic function
f exp(iuz)d Pr(U<u) = exp(—¥|z|?) ,

hence, the probability density

(1/7) exp(—ys®) cos(su)ds .

These densities are called stable (a dreadfully overworked term) or better
Lévy stable. There is a discussion of them in volume II of Feller or in Lam-
perti 1966.

Tests of my optimistic conjecture, that price changes are symmetric sta-
ble, have proved it to be of very broad validity. The first tests (Mandelbrot
1963, 1967) applied to many commodity prices, to some interest rates, and to
some old (nineteenth century) security prices; then Fama 1963 studied recent
security prices and Roll 1970 studied other interest rates. Here we must be
content with a single illustration, fig. 4.5, which combines doubly loga-
rithmic graphs for large absolute cotton price relatives, together with the
cumulated density function of the symmetrically stable distribution of expo-
nent D = 1,7. The horizontal scale u of lines (1a), (1b), and (1¢) is marked
along the lower edge, and the horizontal scale « of lines (2a), (2b), and (2¢) is
marked along the upper edge. The vertical scale gives the frequencies of cases
where the change of log Z exceeds the change in abscissa. The following three
series of data are plotted:

(la) Frllog,Z(t + one day) — log,Z(r) > ul, (2a) Fr[log,Z(r + one day)
— log,Z(r) < —u], both for the daily closing prices of cotton in New York,
1900—1905 (communicated by the United States Department of Agriculture).

(1b) Fr(log,Z(t + one day) — log,Z(1) > ul], (2b) Fr{log,Z(t + one day)
— log Z(#) < —u], both for an index of daily closing prices of cotton on vari-
ous exchanges in the United States, 1944--1958 (communicated by Hendrik
S. Houthakker). _

(1¢) Frilog.Z(t + one month) — log.Z(f) > u], (2¢) Frllog.Z(t + one
month) — log,Z(1) < —u], both for the closing prices of cotton on the fif-
teenth of each month in New York City, 1880-1940 (communicated by the
United States Department of Agriculture).

The reader is advised to copy the horizontal axis and the theoretical dis-
tribution on a transparency and to move both horizontally. The theoretical -
curve will then be superimposed on either of the empirical graphs with slight
discrepancies of general shape. This is precisely what my scaling criterion
postulates. (The slight asymmetry can be handled too; it requires skew vari-
ants of the stable distribution.)

The curves (la) and (1b), (2a) and (2b) would be identical if the pro-
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cesses ruling cotton price change were stationary, but in fact they differ by a
horizontal translation. Since translation on doubly logarithmic coordinates
corresponds to a change of scale in natural coordinates, this discrepancy led
me to concur in my 1963 paper with the economists’ opinion that price change
distributions around 1950 differed from their counterparts around 1900. I
thought the distribution preserved the same shape but had a smaller scale.

More recently, however, 1 found that this concession to opinion was
beyond necessity. I became aware that the data on which curves (1a) and (2a)
were based had been read incorrectly (Mandelbrot 1972). Once this error is
corrected, one is led to curves (1a*) and (2a*) that are nearly identical to the
curves (1b) and (2b). In other words, the process that rules the changes in the
price of cotton seems, in a first approximation, to have remained stationary
over the very long period under study. There is no disputing the major changes
in the value of currency and similar events. But such overall long trends are
negligible in comparison with the fluctuations with which we deal here. One
cannot deny that the data give at casual glance the impression of being grossly
nonstationary, but this impression is the result of casual impressions formed
against the background of a belief that the underlying process is Gaussian. My
alternative to the nonstationary Gaussian process is a stationary non-Gaussian
stable process. 1 believe the latter gives a much greater hope of eventually
being related to a good economic theory and of yielding a realistic statistical
algorithm.

To appreciate the nature of this achievement, it is vital to look carefully
at the scales. In this instance, scaling implies that the distribution based on a
record of daily price changes over a period of five years of average economic
variability extrapolated to monthly price changes goes right through the data
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from the various recessions, the depression, and so forth. It accounts for all
the most extreme events of nearly a century in the history of an essential and
most volatile commodity. I do not believe there is any other comparably suc-
cessful prediction in economics. It warrants being explored further.

OTHER FORMS OF SCALING

The impression that I devoted much of my life work to diverse facets of scal-
ing is correct, even though I was late to recognize this fact myself and did not
adopt this term wholeheartedly until a few years ago. The turning point was
when I went from nongeometric examples, like those in the second part of
this paper, to geometric examples, like those in the first part. Examples of
both kinds abound in my 1977 book Fractals and in my 1982 book, The
Fractal Geometry of Nature. Even my earliest work—which concerned so-
called Zipf rank size rule of word frequencies—is now best understood and
appreciated if it is not centered on the subject of statistical linguistics, but on
the method of scaling.

Scaling is of course an ancient idea, thoroughly familiar to Leibniz; and
the scientific application of scaling is the work of many hands. One facet has
been familiar to zoologists since Julian Huxley under the term allometry. An-
other facet occurs in the urbanists’ central place theory. In the theory of tur-
bulence, scaling has been basic since the work of Lewis Fry Richardson.

CONCLUSION

It is an ancient observation that the variety of complexities in the real world is
boundless, while the number of workable mathematical techniques to tame
them is astonishingly small. Two most promising newcomers in that com-
pany are geometric scaling and the nonstandard geometric scaling shape, the
fractals. '
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