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to Include
Mountains and
Clouds

B e n o î t  M a n d e l b r o t  

This chapter originated in ‘A Lecture on Fractals’ delivered 
at a Nobel Conference at Gustavus Adolphus College in 
St Peter (Minnesota) in 1990. Mandelbrot’s wide-ranging
presentation and the tenor of his responses in the discussion
following the lecture demonstrate the ubiquity of fractals, 
from nature to art and from economics to physics.

Benoît Mandelbrot was born in Poland in 1924, and moved with his
family to Paris in the 1930s where one of his uncles introduced him to
the Julia sets. Despite what he calls ‘chaotic schooling’, Mandelbrot
obtained his Ph.D. in Paris in 1952. A few years later he moved to the US,
and became an IBM Fellow (now Fellow Emeritus) at the Thomas B.
Watson Research Center in New York. He pursued his intuitions about
fractals by using the rare opportunity of massive computer power to
test and prove his idiosyncratic ideas. After prestigious university
appointments in a variety of subjects, he joined the Yale faculty in 1987,
where he is Sterling Professor of Mathematical Science.

Mandelbrot is world-renowned for developing fractal geometry and
discovering the Mandelbrot Set, named in his honour. He has written
and lectured widely and has received numerous academic honours,
including The Wolf Prize for Physics in 1993 and The Japan Prize for
Science and Technology in 2003.
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It has very often been forgotten that geometry
simply must have a visual component, and I
believe that in many contexts this omission has

proven to be very harmful.
To begin, let me say a few words concerning the

scope of fractal geometry. In 1990, I saw it as a
workable geometric middle ground between the
excessive geometric order of Euclid and the geometric
chaos of general mathematics. It is based on a form
of symmetry that had previously been underutilized,
namely self-similarity, or some more general form of
invariance under contraction or dilation. 

Fractal geometry is conveniently viewed as a
language, and it has proved its value by its uses. Its
uses in art and pure mathematics, being without
practical application, can be said to be poetic. Its uses
in various areas of the study of materials and other
areas of engineering are examples of practical prose.
Its uses in physical theory, especially in conjunction
with the basic equations of mathematical physics,
combine poetry and high prose. Several of the
problems that fractal geometry tackles involve old
mysteries, some of them already known to primitive
man, others mentioned in the Bible and others
familiar to every landscape artist.

To elaborate, let us provide a marvellous text that
Galileo wrote at the dawn of science: 

Philosophy is written in this great book – I am
speaking of the Universe – which is constantly
offered for our contemplation, but which cannot
be read until we have learned its language and
have become familiar with the characters in
which it is written. It is written in the language
of mathematics, and its characters are triangles,
circles and other geometric forms, without

which it is humanly impossible to understand a
single word of it; without which one wanders in
vain across a dark labyrinth. (Galileo Galilei: Il
Saggiatore, 1623)

We all know that mechanics and calculus, therefore
all of quantitative science, were built on these char-
acters, and we all know that these characters belong
to Euclidean geometry. In addition, we all agree with
Galileo that this geometry is necessary to describe
the world around us, beginning with the motion of
planets and the fall of stones on Earth.

A geometry of nature?

But is it sufficient? To answer, let us focus on that
part of the world that we see in everyday life. Modern
box-like buildings are cubes or parallelepipeds.
Good-quality plasterboard is flat. Good-quality tables
are flat and typically have straight or circular edges.
More generally, the works of Man, as the engineer
and the builder, are typically flat, round or follow the
other very simple shapes of the classical schools of
geometry.

By contrast, many shapes of nature – for example,
those shapes of mountains, clouds, broken stones,
and trees – are far too complicated for Euclidean
geometry. Mountains are not cones. Clouds are not
spheres. Island coastlines are not circles. Rivers don’t
flow straight. Therefore, we must go beyond Euclid if
we want to extend science to those aspects of nature.

A geometry able to include mountains and clouds
now exists. I put it together in 1975, but of course it
incorporates numerous pieces that have been around
for a very long time. Like everything in science, this
new geometry has very, very deep and long roots. Let
me illustrate some of the tasks it can perform.
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In order to understand geometric shapes,

I believe that one must see them
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Figure 3.1 seems to represent a real mountain but
is neither a photograph nor a painting. It is a
computer forgery; it is completely based upon a
mathematical formula from fractal geometry. The
same is true of the forgery of a cloud that is shown in
Fig. 3.2.

An amusing and important feature of these figures
is that both adopt and adapt formulas that had been
known in pure mathematics. Thanks to fractal
geometry, diverse mathematical objects, which used
to be viewed as being very far from physics, have
turned out to be the proper tools for studying nature.
I shall return to this in a moment.

Fractal modelling of relief was successful in an
unexpected way. It is used in an immortal master-
piece of cinematography called Star Trek Two, The
Wrath of Khan. Many people have seen it, but –
unless prodded – few have noticed that the new
planet that appears in the Genesis sequence of that
film has a fractal relief. If I could show it to you, you
would see that it happens to have peculiar character-
istics (superhighways and square fields). They occur
because of a shortcut taken by Lucasfilm in order to
make it possible to compute these fractals quickly
enough. But we need not dwell on flaws. Far more
interesting is the fact that the films that include
fractals create a bridge between two activities that
are not expected to ever meet – mathematics and
physics on the one hand, and popular art on the
other.

More generally, fractals have an aspect that I
found very surprising at the beginning and that con-
tinues to be a source of marvel: people respond to
fractals in a deeply emotional fashion. They either
like them or dislike them, but in either case the
emotion is completely at variance with the boredom
that most people feel towards classical geometry.

Let me state that I will never say anything
negative about Euclid’s geometry. I love it as it was
an important part of my life as a child and as a
student; in fact, the main reason why I survived 
academically, despite a chaotic schooling, was my
geometric intuition, which allowed me to cover my
lack of skill as a manipulator of formulae. But we all
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Fig. 3.1 left: A fractal
landscape that never was
(R.F.Voss)

Fig. 3.2 below: A cloud
formation that never was
(S. Lovejoy & 
B.B. Mandelbrot)
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know by experience that, apart from professional
geometers, almost everybody views Euclid as being
cold and dry. The fractal shapes I am showing are
exactly as geometric as those of Euclid, yet they
evoke emotions that geometry is not expected or
supposed to evoke.

The shape of deterministic chaos

Only one new geometry

Now a few preliminary words about deterministic
chaos. This topic will be touched on below, but
something should be mentioned immediately. The
proper geometry of deterministic chaos is the same as
the proper geometry of the mountains and the
clouds. Not only is fractal geometry the proper
language to describe the shape of mountains and
clouds, but it is also the proper language for all the
geometric aspects of chaos. The fact that we need
only one new geometry is really quite marvellous,
because several might have been needed, in addition
to that of Euclid.

I have myself devoted much effort to the study of
deterministic chaos, and would like to show you now
a few examples of the shapes I have encountered in
this context.

Figure 3.3 is an enormously magnified fragment
from a set to which my name has been attached.
Here, a fragment has been magnified in a ratio equal
to Avogadro’s number, which is 1023. Why choose
this particular number? Because it’s nice and very
large, and such a huge magnification provides a good
opportunity for testing the quadruple-precision arith-
metic on the IBM computers of a few years ago.
(They passed the test. It’s very amusing to be able 
to justify plain fun and pure science on the basis of
such down-to-earth specific jobs.) If the whole
Mandelbrot Set had been drawn on the same scale,
the end of it would be somewhere near the star
Sirius.
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Fig. 3.3 above: A very small fragment of the Mandelbrot
Set (R.F.Voss)

Fig. 3.4 below: A small fragment of a modified Mandelbrot
Set (B.B. Mandelbrot)
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The shape of the black bug near the centre is very
nearly the same as that of the centre of the whole
Mandelbrot Set, to be discussed later when I return
to this topic. Finding bugs all over is a token of 
geometric orderliness. On the other hand, the sur-
rounding patterns vary from bug to bug. This is a
token of variety.

The shape shown in Fig. 3.4 is a variant of the
Mandelbrot Set that corresponds to a slightly differ-
ent formula. This shape is reproduced here simply to
comment on a totally amazing and extraordinarily
satisfying aspect of fractal geometry. Fractals are per-
ceived by many people as being beautiful, but were
initially developed for the purpose of science, for the
purpose of understanding how the world is put
together – both statically (in terms of mountains)
and dynamically (in terms of chaos, strange extrac-
tors, etc.).

In other words, the shapes shown in Figs. 3.1 to
3.4 were not intended to be beautiful. So why is it that
they are perceived as beautiful? The fact that they are
must tell us about something regarding our system of
visual perception.

I started with these four figures because their
structure is so rich, but I went overboard. The
richness of their structure means that these figures
cannot be used to explain the main feature of all
fractals. The underlying basic principle shows far
more clearly on Fig. 3.5, which – for a change –
reproduces a real photograph of a real object. You
may recognize the Romanesco variety of cauliflower.
Each bud looks absolutely like the whole head, and
in turn, each bud subdivides into smaller buds, and
so on. I am told that the same structure repeats over
five levels of separation that you can see with the
naked eye, and then through many more levels that
you can only see with a magnifying glass or micro-
scope.

Scientists’ first reaction to such shapes was to
focus on the spirals formed by the buds. This interest

led to extensive knowledge about the relation
between the golden mean (and the Fibonacci series),
and the way plants spiral. But to me what is more
important is the hierarchical structure of buds
because it embodies the essential idea behind
fractals.

What is a fractal ?

Before we go on to tackle what a fractal is, let us
ponder what a fractal is not. Zoom on to a geometric
shape and examine it in increasing detail. That is,
take smaller and smaller portions near a point P, and
allow every one to be dilated, that is, enlarged to
some prescribed overall size.

If our shape belongs to standard geometry, it is
well known that the enlargements become increas-
ingly smooth. That is, one expects a curve to be
‘attracted’, under dilations, towards a straight line
(thus defining the tangent at the point P). The term
‘attractor’ is borrowed from dynamics and probabil-
ity theory. One also expects a curve to be attracted
under dilation to a plane (thus defining the tangent
plane at the point P).

An exception to this rule is when P is a double
point of a curve; the curve near P is then attracted to
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Fig. 3.5 above: Cauliflower Romanesco 
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two intersecting lines and has two tangents, but
double points are few and far between in standard
curves. In general, one can say that nearly every
standard shape’s local structure converges under
dilation to one of the small number of ‘universal
attractors’. The grandiose term universal is borrowed
from recent physics.

Yet the shapes I have been showing fail to be
locally linear. In fact, they deserve to be called ‘geo-
metrically chaotic’ until proven otherwise. In an
isolated neighbourhood of the great City of Science,
a kind of geometric chaos was discovered in the fifty
years from 1875. Then, while trying to escape their
concern about nature, mathematicians became aware
of the fact that a geometric shape’s roughness need
not vanish as the examination becomes more search-
ing. It is conceivable that it should either remain
constant, or endlessly vary up and down. 

The hold of standard geometry was so powerful,
however, that the resulting shapes were not recog-
nized as models of nature. Quite to the contrary, their
discoverer proudly labelled them ‘monstrous’ and
‘pathological’. After discovering these sets, mathe-
matics proceeded to increasingly greater generality.

Like a sailor, science must constantly navigate

between two dangers: the lack of and excess of gen-
erality. Between the extremes of the excessive geo-
metric order of Euclid, and of the geometric chaos of
the most general mathematics, can there be a mid-
dle ground? To provide one is the ambition of fractal
geometry.

The essential nature of fractals

The reason why fractals are far more special than the
most general shapes of mathematics, is because they
are characterized by so-called ‘symmetries’, which are
invariances under dilations and/or contractions.
Broadly speaking, mathematical and natural fractals
are shapes whose roughness and fragmentation neither
tend to vanish, nor fluctuate up and down, but
remain essentially unchanged as one continually zooms
in. Hence, the structure of every piece holds the key
to the whole structure.

The preceding statement is made precise and illus-
trated by Fig. 3.6, which represents a shape that is
enormously more simple than those shown previ-
ously. As a joke, I called it the ‘Sierpinski gasket’, and
the joke has stuck.

The four small diagrams show the ‘initiator’ of the
construction, which is a triangle, then its first three
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Fig. 3.6 above and right: The Sierpinski gasket: early and late
stages of construction

The fact that we need only one new geometry 

is really quite marvellous, because several 

might have been needed, in addition to

that of Euclid.
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stages, while the large diagram shows an advanced
stage. The basic step of the construction is to divide
a given (black) triangle into four sub-triangles, and
then erase (whiten) the middle fourth. This step is
first performed with a wholly black filled-in triangle
of side 1, then with three remaining black triangles
of side 1/2. This process continues, following a
pattern called recursive deletion, which is very widely
used to construct fractals. Related patterns are recur-
sive substitution and recursive addition (which we shall
encounter) and recursive multiplication (which is fund-
amental but beyond the scope of this talk).

Now, take the gasket and perform an isotropic
linear reduction whose ratio is the same in all direc-
tions – namely 1/2 – and whose fixed point is any of
the three apexes of the initiator triangle. This trans-
formation is called a similarity. More precisely, it is
homothety or linear self-similarity. By examining the
large advanced stage picture, it is obvious that each
of the three reduced gaskets is simply superposed on
one-third of the overall shape. For this reason, the
fractal gasket is said to have three properties of self-
similarity.

The essence of self-similarity 

Precise terminology is necessary here because one
can also understand ‘similar’ as a loose everyday
synonym of ‘analogous’. In the early days of fractal
geometry, the resulting terminological ambiguity was
acceptable to physicists, because early detailed
studies did indeed concentrate on linearly self-similar
shapes. However, later developments have extended
to self-affine shapes, in which the reductions are still
linear, but the reduction ratios in different directions
are different. For example, in order to go from a large
to a small piece of fractal relief, one must contract
the horizontal and vertical coordinates in different
ratios. Hence, a fractal relief is called linearly self-
affine.

When the Sierpinski gasket is constructed by

deleting middle triangles, as in Fig. 3.6, its self-
similarity seems, so to speak, to be ‘static’ and ‘after-
the-fact’. But this is a completely misleading
impression. Its prevalence and its being viewed as a
flaw are continual sources of surprise. In fact, the
same symmetries can be reinterpreted ‘dynamically’
and suffice to generate the gasket. The device, which
is called the ‘chaos game’, is a stochastic, or randomly
determined interpretation of a scheme made by
Hutchinson. Start with an ‘initiator’, that is, an arbi-
trary bounded set, for example a P0. Denote the three
similarities of the gasket by S0, S1, and S2, and
denote by k(m) a random sequence of the digits 0, 1
and 2. Then define an ‘orbit’, as made of the points 
P1 = Sk(1) (P0),  P2 = Sk(2) (P1) and more generally 
Pj = Sk(j) (Pj−1). One finds that this orbit is ‘attracted’
to the gasket, and that after a few stages it describes
its shape very well.

In 1964, when I first used the word ‘self-similar-
ity’, I thought it was a neologism. In fact at least one
writer had used it before. But the idea itself is per-
fectly obvious and must be very old. The reason the
word was needed is that the shapes to which it refers
had no importance until my work. For example,
Sierpinski had defined his shape for some purpose
that has long been forgotten – because it was not
very important.

Why did self-similarity become important?
Because Figs. 3.1 to 3.5 are self-similar, not – to be
sure – in an exact, but in a slightly loose meaning of
the word. Why fractal geometry has become such a
large subject, and why I spent so much time in my
efforts to build it as a discipline, is driven by the
empirical discoveries (each established by a separate
investigation) that the relief of planet Earth is self-
similar, and that the same is true of many other
shapes around us. Figures 3.1 to 3.5 suffice to show
that the impression that self-similarity is a barren and
not very fruitful idea would be an altogether wrong
impression.
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Granted what has just been asserted, why did the
gasket become important? It does not represent
anything of interest; in fact, it is so relentlessly
monotonous that it could be seen as being as simple
as Euclid. You can know nearly everything about it
in just a few days of study. The same holds for
another widely known shape, called the snowflake
curve or Von Koch Island, for a set Cantor Dust, and
for a few other long-known structures of the same ilk.
The reason why they are important is because you
must begin the study of fractal geometry with the
Sierpinski gasket and its type, but keep in mind that
the real fun begins beyond them.

The new Peano curve

The fun begins after one has added an element of
unpredictability, due to either randomness (as in Figs.
3.1, 3.2 and 3.5) or non-linearity (as in Figs. 3.3 and
3.5). Non-linearity is the key word of the new
meaning of chaos, namely of deterministic chaos,
and randomness is the key to chaos in the old sense
of the word. The two are very intimately linked.

But let us not rush away from linearly self-similar
fractals, because in some cases a suitable graphic
rendering suffices to break their relentless monotony.

Figure 3.7 shows my variant of a curve that
Giuseppe Peano constructed in 1890. The point of
Peano curves is that they manage to fill a portion of
the plane, hence contradict the basis of the notion
of curves. Mathematicians have written pages and
pages to praise the freedom of imagination that
allows man to invent shapes that are completely
removed from reality. The Peano curve was specifi-
cally designed to be a counterexample to a natural
belief that used to be universal: that curves and
surfaces do not mix. It was designed for the purpose
of separating mathematics and physics into two com-
pletely independent investigations. Unfortunately, it
was quite successful in that respect, at least for a
century.

To obtain my new Peano curve, you replace an
initial straight segment by the complicated zigzag
(top left). Then (top middle) each zig and zag is
replaced by smaller versions of the zigzag on the top
left. The same pattern (called recursive substitution) is
then repeated without end. In the top-right diagram,
it is easy to believe that the boundary between black
and white will end up filling a snowflake curve. I call
it a ‘snowflake sweep’. The bottom of Fig. 3.7 repro-
duces the same curve but will replace every segment
by an arc of a circle. 

This fancy computer rendering was great fun but
had a very practical goal. It was carefully thought
through to force everybody to see all kinds of branch-
ing systems of arteries and veins, or of rivers, or of
flames or whatever else you prefer. But those very
realistic things were not seen until my work, if only
because mathematicians spurned their ability to see.
Partly as a result, mathematics and physics did indeed
move in very different directions.

Figure 3.8 combines a sequence of completely
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Fig. 3.7 above: Mandelbrot’s Peano curve (B.B. Mandelbrot) 
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artificial, random landscapes. Each part of this
picture consists of enlarging a small black rectangle
in the preceding picture and then filling in additional
detail. This procedure is called recursive addition.
Each landscape differs from the preceding one by
being more detailed, yet at the same time the succes-

sive enlargements are comparable. They might have
been different parts of the same coastline examined
on the same scale, but in fact they are neighbour-
hoods of one single point examined at very different
scales. Clearly, these successive enlargements of a
coastline completely fail to converge to a limit
tangent!

How to measure roughness 

At this point, let me recall a story about the great dif-
ficulties the ancient Greeks used to experience in
formulating the idea of ‘size’. Navigators knew that
Sardinia took longer to circumnavigate than Sicily.
On the other hand, there was evidence that
Sardinia’s fields are smaller than Sicily’s. So which
was the bigger island? Greeks sailors seem to have
long held the belief that Sardinia was the bigger of
the two, because its coastline was longer. 

But let us examine Fig. 3.9, and ponder the notion
of coastline length. When the ship used to circum-
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Fig. 3.8 right: Zoom onto 
a fractal landscape that
never was 
(R.F.Voss)

Fig. 3.9 below:
A fractal coastline that
never was 
(B.B. Mandelbrot)
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navigate is large, the captain will report a rather
small length. A much smaller ship would come closer
to the shore and navigate along a longer curve. A
man walking along the coastline will measure an
even longer length. So what about the ‘real length of
the coast of Sardinia’? The question seems both 
elementary and silly, but it turns out to have an
unexpected answer. The answer is, ‘it depends’. The
length of a coastline depends on whether you cir-
cumnavigate it in a large or a small ship, or walk
along it, or use a mouse or some other instrument to
measure the coastline.

This makes us appreciate the extraordinary power
of the mental structure that schools have imposed by
restricting their teaching of geometry to Euclid.
Many people thought they never understood
geometry, yet they learned enough to expect every
curve to have a length. For the curves in which I am
interested, this turns out to have been the wrong
thing to remember from school. Once again, the 
theoretical length is infinite, and the practical length
depends on the method of measurement. Its increase
is faster where the coastline is rough, making it nec-
essary to study the notion of roughness.

This last notion is fundamental, because the world
we live in includes many rough objects that can
cause great harm. Man must learn to live among

those objects. However, the task of
measuring roughness objectively

has turned out to be extraordinarily difficult. People
whose work demands it, like metallurgists, merely
went to their friends in statistics asking for a number
they could measure and call roughness.

But the following experiment reveals a serious
problem. Take samples of steel that the US National
Bureau of Standards guarantees to come from one
block of metal as as homogeneous as man can make
it. Break the steel samples and measure the roughness
of the fractures, evaluated according to the rules of
statistics. You will find that the values you get are in
complete disagreement.

Fractal dimension is the answer

On the other hand, I argue that roughness happens
to be measured consistently by a quantity called
fractal dimension, which happens in general to be a
fraction, and which one can measure very accurately.
Studying many samples from the same block of
metal, we found the same dimension for every
sample.

The idea is that fractal dimension is a proper
measure for the notion of roughness just as tempera-
ture is a proper measure for the notion of hotness.
Man must have known forever that some things are
hot and others are cold, but before physics could
move on to a theory of matter, it was necessary to
describe the degree of hotness by one number. This
was possible only when the thermometer was
invented, and different people using the same ther-
mometer could get the same value of hotness for the
same object.

Similarly and most fortunately, fractal
geometry started with a few ideas about how to
express roughness and complexity by a number.
Some of these ideas add up a bunch of related

but distinct tools (one can think of them as being
different types of screwdrivers) that are collectively
called ‘fractal dimensions’. People who work with

fractal geometry quickly develop an intuition of
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So what about the ‘real length of the

coast of Sardinia’?  The question seems
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fractal dimension and can now guess it very accu-
rately for simple shapes.

The reason we use the term ‘dimension’ is that it
can also be applied to points, intervals, full squares
and full cubes, and in those cases yield the familiar
values of 0, 1, 2 and 3. Applied to fractals, however,
these definitions usually yield values that are not
integers. The loose idea of ‘roughness’ has turned out
to demand a number of distinct numerical imple-
mentations, hence the multiplicity of distinct ‘fractal
dimensions’ has proven valuable. A dimension delin-
eated by Hausdorff and Besicovitch was the first
example, but for practical needs it is either too diff-
icult or too specialized.

The simplest variant is the similarity dimension Ds,
which applies to shapes that are linearly self-similar.
As I have already stated, this means that they are
made up of N replicas of the whole, each replica
being reduced linearly in the same ratio r. Then one
defines

Ds =
log N 
log(1/r)

For a point, an interval, a square and a full cube, one
has Ds = 0, 1, 2 and 3, respectively. As announced,
these are the familiar values of the ‘ordinary’ dimen-
sions. But the Sierpinski gasket adds something very
new: one has N = 3 and r = 1/2, hence 
D = log 3/log 2 ~ 1.5849 …

Another simple fractal dimension is the mass
dimension. Take a distribution of mass of uniform
density on the line, in the place or in space. Then
choose a sphere of radius R whose centre lies in our
set. The mass in such a sphere takes the form MR =
FRD, where D is the ‘ordinary’ dimension and F is a
numerical constant. The idea of uniform density
extends to fractals, and in many cases an exponent
D can be defined; it is called the mass dimension
and is often equal to the similarity dimension.
Unfortunately, we must move away from dimension.

How to grow a tree
The next subject I wish to tackle is the increasingly
valuable role of fractal geometry as tool in the dis-
covery and study of previously unknown aspects of
nature. Nothing illustrates this role better than a
form of random growth that generates the Fractal
Diffusion Limited Aggregates (DLA) or Witten-Sander
aggregates. A DLA cluster lurks in the centre of Fig.
3.10. It is a tree-like shape of baffling complexity that
one can use to model how ash forms, how water seeps
through rock, how cracks spread in a solid and how
lightning discharges.

To see how the growth proceeds, take a very large
chess board and place a queen that is not allowed to
move in the central square. Pawns are allowed to
move in any of the four directions on the board.
They are released from a random starting point at the
edge of the board, and are instructed to perform a
random or drunkard’s walk. Each step can take one
of four directions chosen with equal probabilities.
When a pawn reaches a square next to that of the
original queen, it transforms itself into a new queen
and cannot move any further. Eventually, one has a
branched, spidery collection of queens.

Quite unexpectedly, massive computer simula-
tions show that DLA clusters are fractal. They are
nearly self-similar, that is, small portions are very
much like reduced versions of large portions. But
deviations from randomized linear self-similarity are
obvious and pose interesting challenges.

One reason for the importance of DLA is that it
concerns the interface between the smooth and the
fractal. A premise of fractal geometry is that much in
the world is fractal. Nevertheless, science is expected
to be cumulative, the new being added to the old,
without chasing it away. Therefore, new wisdoms
must not deny the old wisdom that the world is made
of smooth shapes and involves smooth variation and
differential equations.

What DLA shows is that the old and new

A GEOMETRY ABLE TO INCLUDE MOUNTAINS AND CLOUDS 57

Fractal M 3*****  4/5/04  10:07 am  Page 57



wisdoms are compatible only if one abandons the old
philosophical expectation that everything in the
world will eventually prove to be smooth or of
smooth variation.

To show how smooth variation can produce
rugged behaviour, the original construction must first
be rephrased in terms of the theory of electrostatic
potential. The description that follows is necessarily
a little schematic. Grow DLA in the big box con-
nected to a positive potential (to be taken as unity)
and connect the cluster itself to the potential 0.
Then the value of the potential elsewhere in the box
is best described by equipotential curves, for example,
the curves along which the potential takes the
increasing values .01, .02, … .99.

Figure 3.10 shows that all these curves are smooth
and that they provide a progressive transition
between the box and the boundary of the cluster.
Analytic calculation is out of the question, but
‘physical common sense’ can be combined with
numerical calculation. In effect, the object’s bound-
ary includes many needles, and each has a high
probability of getting hit by lightning. This is mani-
fested by the fact that equipotential lines crowd
together near the tips of a DLA cluster. More gener-
ally, returning to the random pawns that build up a
DLA cluster, the position where the pawn lands is
obtained from the shapes of the electrostatic equi-
potentials.

Now we come to the next logical step, which
implies that DLA has brought an intellectual inno-
vation of the highest order. For nearly 200 years, the
study of potentials has limited itself to fixed bound-
aries. But in the simple random walk that creates
DLA, a ‘hit’ in the above terminology can be inter-
preted as provoking a displacement of the boundary.
Thus, the massive numerical experiments about DLA
teach us that when one allows boundaries to move in
response to the potential, the boundaries become
fractal.

This shows without any trace of doubt that one
can create rough fractals from the smoothness that
characterizes equipotential lines, but this knowledge
remains imperfect. We all thirst for new mathematics
and physics. Nevertheless, it is worth noting how
fractal geometry has led to an altogether new
problem, outlined the broad solution and set many
scientists to work.

The Julia Set

Our next move returns from randomness to determ-
inistic chaos, and replaces objects in real physical
space by imaginary objects. What will remain
unchanged is that we shall deal with spiky sets sur-
rounded by smooth equipotential lines.

The first notion here is that of the Julia Set of
quadratic iteration. Pick a point c of coordinates u
and v, and call it a ‘parameter’. Next, in a different
plane, a point P0 of the coordinates x0 and y0. Then
form x1 = x0

2 − y0
2 + u  and y1 = 2x0y0 + v. These

formulas may seem a bit artificial, but in order to
satisfy the reader who is scared of complex numbers,
they simplify if the point c of coordinates x and y is
represented by the complex number z = x + iy.
(Complex numbers add and multiply like ordinary
numbers, except that i2 must always be replaced by
–1.) In terms of the complex numbers c = u + iv and
z = x + iy, the preceding rule simplifies to z1 = z0

2 + c
and (more generally) z k+1= zk

2 + c. Even the reader
who is scared of complex numbers is able to under-
stand the expressions in terms of xk and yk.

When the orbit Pk fails to escape to infinity, the
initial P0 is said to belong to the ‘filled-in Julia Set’.
An example is shown in Fig. 3.11. If you start outside
of the black shape, you go to infinity. If you start
inside, you fail to iterate to infinity.

The boundary between black and white is called
a ‘Julia curve’. It is approximately self-similar. Each
chunk is not quite identical to a bigger chunk,
because of non-linear deformation. Yet, it is aston-
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Constructing the Mandelbrot Set 

Here is how the Mandelbrot Set is constructed. Take
a starting point C0 in the plane of coordinates u0 and
v0. From the coordinate of C0, form a second point
C1 of coordinates u1 = u0

2 − v0
2 + u0

and  v1 = 2u0u0 + v0. 
Next, form the point C2 of coordinates 
u2 = u1

2 − v1
2 + u0

and v2 = 2u1u1 + v0. 
More generally, the coordinates uk and vk of Ck

are obtained from uk–1 and vk–1 by the so-called
‘iterative formulas’ 
uk = uk

2
–1 – vk

2
–1 + u0 and 

vk = 2uk–1vk–1 + v0. 

When C0 is represented by z0 = u0 + iv0, the above
formulas simplify to z1 = z0

2 + z0 and zk = zk
2

–1 + z0.
The points Ck are said to form the orbit of C0, and
the set M is defined as follows: If the orbit Ck fails to
go to infinity, one says that C0 is contained within
the set M. If the orbit Ck does go to infinity, one says
that the point C0 is outside M. 

This algorithm concerns the following very sober
problem of deterministic dynamics. When C0 is in
the interior of M, quadratic dynamics yields an orbit
that is perfectly orderly, in the sense that it is asymp-
totically periodic. When C0 is outside M, to the
contrary, the behaviour of the orbit is deterministic,
but almost unpredictably, chaotic. Quadratic
dynamics was singled out for detailed study because
in this case the criterion separating orderly from
chaotic behaviour is as clean as can be, as seen
above. The boundary between the two possibilities
turns out to be messy beyond any expectation.

Zooming towards a portion of the boundary of the
Mandelbrot Set, you see two distinct phenomena.
The part is simply a repetition of something already
seen. This element of repetition is essential to beauty.
But beauty also requires an element of change, and
this is also very clearly present. As you come closer
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Fig. 3.10 above: A cluster of diffusion limited aggregation,
surrounded by its equipotential curves (C.J.G. Evertsz and
B.B. Mandelbrot)

ishing that iteration should create any form of self-
similarity, quite spontaneously.

As in the investigation of fractal mountains, the
computer was essential to the study of iteration. The
bulk of fractal geometry is concerned with shapes of
great apparent complication and they could never be
drawn by hand. More precisely, this picture might
have been computed by a hundred different people
working for years, but nobody would have started
such an enormous calculation without first feeling
that it was worth performing.

Not only did I have access to a computer in 1979,
but I was familiar with its power. The fact that no one
knew what was going to emerge was enough to make
these calculations worth trying. A fishing expedition
led to a primitive form of Fig. 3.12. The Julia Sets of
the map z2+ c can take all kinds of shapes, and a small
change in C can change the Julia Set very greatly. I
set out to classify all the possible shapes (for reasons
that are too lengthy to discuss) and came up with a
new shape. That it has been called the Mandelbrot Set
is of course a great honour. Figure 3.3 above was a
tiny portion of Fig. 3.12.
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and closer, what you see becomes more and more
complicated. The overall shape is the same, but the
hair structure becomes more and more intense. This
feature is not something we put in on purpose. In so
far as the mathematics is concerned, it is not
invented, but discovered: we see something that has
been there forever. What we discover is that the
mathematics of z squared plus C is astonishingly
complicated, by contrast with the simplicity of the
formula. We find that the Mandelbrot Set, when
examined more and more closely, exhibits the co-
existence of something that repeats itself relentlessly,
something that exhibits a variety that boggles the
imagination. I first saw the Mandelbrot Set on a
black and white screen of very low graphic quality,
and the picture looked dirty. But zooming in on what
seemed like dirt revealed an extraordinary little copy
of the whole.

In Fig. 3.12, the Mandelbrot Set is the white ‘bug’
in the middle. It is very rough-edged, but is sur-
rounded by a collection of zebra stripes whose edges
become increasingly smooth as one goes away from
M. These zebra-stripe edges happen to be Laplacian
equipotential curves. They are just like those in Fig.
3.10 but are far easier to obtain.

Fractal art and the mathematician

To the layman, fractal art tends to seem simply
magical, but no mathematician can fail to try to
understand its structure and meaning. A remarkable
aspect of recent events is that the mathematics trig-
gered by the Mandelbrot Set could have passed as
‘pure’ if only its visual origin could have been hidden.
To many mathematicians, the newly opened possibil-
ity of playing with pictures interactively has revealed
a new mine of purely mathematical questions and
conjectures, of isolated problems and whole theories.
To take an example, examination of the Mandelbrot
Set led me in 1980 to many conjectures that were
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Fig. 3.11 above: Quadratic Julia Set for the map z z
2

+ C.

Fig. 3.12 below: The Mandelbrot Set, surrounded by its
equipotential curves
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simple to state, but then proved very hard to crack.
(The main one remains unsolved.) To mathemati-
cians, their being difficult and slow to develop does
not make them any less fascinating, because a host of
intrinsically interesting side-results have been
obtained in their study.

Herein lies a tale. Pure mathematics is certainly
one of the remarkable activities of man; it certainly is
different in spirit from the art of creating pictures by
numerical manipulation, and it has indeed proven
that it can thrive in splendid isolation – at least over
some brief periods. Nevertheless, the interaction
between art, mathematics and fractals confirms what
is suggested by almost all earlier experiences. Over
the long haul, mathematics gains by not attempting
to destroy the organic unity that appears to exist
between seemingly disparate but equally worthy
activities of man, the abstract and the intuitive.

Of course, the black and white figures in this
chapter are not beautiful colour fractal pictures. As
in the case of the mountains, the quality of the
colour rendering shows the skills of the programmers,
but the structure itself is independent of the colour
rendering. What is important is that the structure is
too complicated to be understood unless the colour
rendering is sufficiently rich. In fact, the set has such
an enormous amount of structure that we cannot see
it in one single colour rendering. Different render-
ings emphasize very different aspects of it. Again, this
structure was not invented for the purpose of doing
something beautiful, but purely for the purpose of
exploring the advanced theory of z squared plus C.

Simplicity generates marvellous complexity

Let me now bring together the separate strings of my
chapter. How did fractals come to play their role of
‘extracting order out of chaos’? The key resides in a
very surprising discovery that I made thanks to
computer graphics.

The algorithms that generate fractals are typically

so extraordinarily short as to look positively dumb.
This means they must be called ‘simple’. Their fractal
outputs, on the contrary, often appear to involve
structures of great richness. A priori, one would
expect the construction of complex shapes to neces-
sitate complex rules, but surprisingly, it is not so.

What is the special feature that makes fractal
geometry perform in such an unusual manner? The
answer is very simple. The algorithms are recursive,
and the computer code written to represent them
involves ‘loops’. That is, the basic instructions are
simple, and their effects can be followed easily.

Let these simple instructions be followed repeat-
edly. Unless one deals with the simple old fractals
(the Cantor Set and Sierpinski gasket), the process
of iteration effectively builds up an increasingly com-
plicated transform, whose effects the mind can follow
less and less easily. Eventually, one reaches something
that is qualitatively different from the original
building block. One can say that the situation is a
fulfilment of what in general is nothing but a dream:
the hope of describing and explaining chaotic nature
as the cumulation of many simple steps.

Many fractals have been accepted as works in a
new form of art. Some are representational, while
others are totally unreal and abstract, yet all strike
almost everyone in forceful, almost sensual, fashion.
The artist, the child and the ‘man in the street’ can
never see enough as they never expect to get
anything of this sort from mathematics. 

Nor did mathematicians expect their subject to
interact with art in this way. Eugene Wigner has
written about ‘the unreasonable effectiveness of
mathematics in the natural sciences’. To this line, I
have been privileged to add another parallel state-
ment, concerning ‘the unreasonable effectiveness of
mathematics as creator of shapes that Man can
marvel about, and enjoy’.
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After Benoît Mandelbrot had delivered this paper,
he answered some questions:

Chairman: First of all, are there any responses
from the panel? 

Q1: Benoît, if I could ask, speaking of poetry and
prose, this is a rather flippant question, but is it
more like music or like noise?

Mandelbrot: For me, music is a form of poetry, and
I forgot to say so simply because I felt it was
obvious. Analogies can become very dangerous if
pursued too far, but I’m glad that you have been
taken by the game.

Q2: Benoît has given us a lot of very nice insights,
I think, into this kind of geometry, but I would
like to express a little, maybe different point of
view, which emphasizes something else. I think
Benoît spoke at one point, something to the effect
that the physical properties reduced to the
geometric properties. And I think, somehow the
geometry is very static, and to me the static should
best be seen with deeper understanding as flowing
from the dynamics. Therefore, I would put a
dynamical perspective on the understanding of
physics, above that of a geometrical perspective. In
the dynamics, the physical process itself, the
equations, which are time-dependent, from those
one can derive some of these fractal geometric
pictures with a deeper understanding than just
looking at the pure fractal geometry in its own
right. So, for me, there’s a little more primary
emphasis on the deeper physics coming from the
dynamics rather than the geometry.

Mandelbrot: I see absolutely no conflict between
our viewpoints. To study the dynamics of Julia
Sets, you must study the statics of the Mandelbrot
Set. In many cases, for example, the shape of the
mountains, everyone knows well, is static. If so,
the next step would be to understand the processes

that create the mountains. This task is far from
having been completed, but James Bardeen has
constructed in successive fractal pictures that
attempt to make use of what is known of the
dynamics in order to represent the statics. Since
very often the geometry of statics is fractal, and the
geometry of dynamics is also fractal, fractals do not
lose either way. 

Q3: I would like to say that I’m completely in
agreement with what Q2 just said. I believe that
one of the main points is to relate dynamics to
chaos and to fractals. In fact, let me give two
examples where I think some additional dynamics
would be very nice. When we speak about adding
some noise, from where is this noise coming? And
when we speak about boundary conditions, from
where are the boundary conditions coming?
Essentially, boundary conditions are an empirical
concept. In hydrodynamics or microscopic physics,
you can speak about boundaries. If you speak about
dynamics, there are no boundaries. Boundaries are
part of the dynamical problem. Therefore, in a
sense, I think that your presentation, which was
very beautiful, of course, is more a kind of phenom-
enology which has to be, I would say, made a little
deeper by making some relation with dynamical
concepts.

Mandelbrot: Two of the figures illustrated a fractal
aggregate. As it grows, its boundary is continually
changed by the dynamics of the generating process.
Thus, I agree with what you say. This dynamics
consists in little particles aggregating together, but
eventually leads to an extraordinary structure. The
open mystery is why this structure is fractal. 

Chairman: In the past, large mathematical models
were used to centralize decisions – for example, in
economics – for traditional models have not
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worked. What does the new science bring to
prediction, control and, ultimately, to social
responsibility?

Mandelbrot: Your question is complicated. I prefer
not to answer the last part.

But I have been greatly interested in economics.
In view of your comments, I must emphasize that
existing economic thought strikingly fail to predict
anything about those aspects of the economy on
which tests are possible, because data are available
in large quantity. For example, many people
attempt to explain or predict the stock market, but
they all fail. My approach to finance in the early
1960s was very different. It was phenomenological,
absolutely, deliberately, and even arrogantly. My
goal was to generate wiggles that people active in
the stock market would not be able to distinguish
from the wiggles they see in newspapers. This goal
was both modest and demanding; I succeeded with
the help of a very simple, purely random process.
Economists challenged me to explain my statistical
statics from their dynamics. Disappointingly, their
dynamic is not up to the task.

Economics and other more complicated areas
borrow a great deal from physics. What they

borrow is mostly made of fully
developed concepts and theories,
such as the concept of equilibrium

and the theory of
displacement

of equilibrium in perfect gases. Next, they try to
develop these concepts and themes in rigorous
fashion in an economics context. Much less effort
is devoted to testing whether economic
phenomena really fall into the domain in which
those standard physical arguments can conceivably
apply.

For example, take continuity. Everyone in
economics seemed to assume that prices were a
continuous function of time. To the contrary, all
the evidence shows that one comes much closer to
reality by assuming prices to be a discontinuous
function of time. Incidentally, this discontinuity is
not that of quantum physics.

To summarize: I was active in economics both in
the early 1960s and again more recently. The
reason why my effort in this area has been
arrogantly phenomenological is because the more
ambitious dynamical study of these things has been
an abject failure. 

Q4: I was interested to see that that question was
put in the past tense about complicated economic
models. It continues to be true that a fantastic
amount of money and effort is put into enormously
complex, many variable, mostly linear, economic
forecasting models. You can read the predictions
from these every year in The Wall Street Journal.
Models that attempt to link tens of thousands of
variables and relationships – home mortgage
interest rates, the ratio of the dollar and the yen,
the demand for Sierpinski gaskets – anything you

can imagine is built into these models, and the
results are often announced to two or three
digits of precision. And then, of course, next

year, they have to be artificially amended with
tens of thousands of ad hoc changes. I think we’re
only beginning to see an appreciation by some
economists of some of the work you’ve already
started to describe, and that you’ll hear described as
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this conference goes on. An appreciation of what
can be done with a greater recognition of the
essential non-linearity of enormous complex
systems like economics. 

Chairman: I have one more question from the
audience: When doing mathematical research, do
you discover or invent? 

Mandelbrot: I certainly feel that I discover. The
assertion that eventually became the four-colour
theorem was discovered long ago … by an amateur.
It was not some new thing to be invented, but an
existing fact to be discovered. It was there.

The same was true when I sat in front of a
terminal, next to this extraordinarily gifted young
assistant, to investigate the set that became known
as the Mandelbrot Set. It was never our feeling that
we were inventing anything. This thing was there.
My whole thrust was to discover more about its
complication. Its complication was the key to the
dynamics of quadratic iteration, which is a
dynamical system with particularly simple
equations. We tried to discover the so-called static
geometry of one set, in order to understand the
dynamics of another set.

Let me also mention the work on multifractals
that I did in the 1960s and published in 1974. In
this instance, the process of discovery occurred on
two levels. First of all, I discovered new facts about
random singular measures. The key was a mathe-
matical theorem that I had learned as a young man,
but had always felt would never be used in physics.
Hence, it is the study of multifractals that made me
discover the real meaning of that theorem. Until
then, its statement was so abstract that I could not
see it and appreciate what it had always meant.

Proofs are very often a very different matter.
Some are so contrived that they definitely look and
feel invented, but the best proofs also have both
the look and the feel of discovery. 

Further reading

The Fractal Geometry of Nature by B.B. Mandelbrot
(W.H. Freeman, 1982) was the first comprehensive
book on the subject, and remains a basic reference
book. Innumerable other books have appeared
since. An up-to date list is found on the website
www.math.yale.edu/mandelbrot

The basic how-to book is The Science of Fractal
Images, eds. H.-O. Peitgen and D. Saupe 
(Springer, 1988). 

The best-known book on iteration is, deservedly,
The Beauty of Fractals by H.-O. Peitgen and 
P.H. Richter (Springer, 1986).

For other aspects of the mathematics, see Fractals:
Mathematical Foundations and Applications by 
K.J. Falconer (Wiley, 1990) and Fractal Geometry
and its Applications: a Jubilee of B. Mandelbrot ed. 
M. Lapidus (2004)

On the concrete uses of fractals, three references
are convenient, because they are special volumes of
widely available periodicals: 
1: Proceedings of the Royal Society of London,
Volume A423 (8 May 1989), which was also
reprinted as Fractals in the Natural Sciences, ed. M.
Fleischmann et al. (Princeton University Press,
1990). 
2: Physica D, Volume 38, which was also reprinted
as Fractals in Physics, Essays in Honor of B.B.
Mandelbrot on his 65th birthday, eds. A. Aharony
and J. Feder (North Holland, 1989).
3: Fractals Volume 3 (September 1995), reprinted
as Fractal Geometry and Analysis: The Mandelbrot
Festschrift, Curação, 1995 eds. C.J.G. Evertsz, 
H.-O. Peitgen & R.F. Voss.

On the physics, a standard textbook is Fractals by 
J. Feder (Plenum, 1988).
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