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Multifractal Measures, Especially for the Geophysicist*

BENOIT B. MANDELBROT'?

Abstract—This text is addressed to both the beginner and the seasoned professional, geology being
used as the main but not the sole illustration. The goal is to present an alternalive approach to
multifractals, extending and streamlining the original approach in MANDELBROT (1974). The generaliza-
tion from fractal sers to multifractal measures involves the passage from geometric objects that are
characterized primarily by one number, namely a fractal dimension, to geometric objects that are
characterized primarily by a function. The best is to choose the function p(a), which is a limil probability
distribution that has been plotted suitably, on double logarithmic scales. The quantity « is called Hélder
exponent. In terms of the alternative function f(x) used in the approach of Frisch-Parisi and of Halsey
et al.. one has p(x) = f(z) — £ for measures supported by the Euclidean space of dimension E. When
fiz) 2 0. f(2) is a fractal dimension. However, one may have f(x) < 0, in which case « is called “latent.”
One may even have x < 0, in which case « is called “virtual.” These anomalies’ implications are explored.
and experiments are suggested. Of central concern in this paper is the study of low-dimensional cuts
through high-dimensional multfractals. This introduces a quantity D, which is shown for g > | to be
a critical dimension for the cuts. An “enhanced multifracial diagram™ is drawn, including f(x), a function
called 1(¢g) and D,.
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1. Introduction and Motivation. Reasons Why Multifractals are Indispensable
in Geophysics and in Other Sciences

The topic of multifractals is bound to become of increasing importance to
geophysics, in particular if the present volume becomes influential.

In one phrase, the generalization from fractal sets to multifractal measures
involves the passage from geometric objects characterized primarily by one number,
to geometric objects characterized primarily by a function. This function can be a
probability distribution that has been renormalized and plotted suitably.

In a different single phrase, the generalization for fractal sets to multifractal
measures involves the passage from a finite number of fractal dimensions to an

* Note: This texl incorporates and supersedes MANDELBROT (1988). A more detailed treatment, in
preparation, will incorporate MANDELBROT (1989).
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infinite number of “dimensions.” Moreover (and this is a special point of this
paper), these “‘dimensions’™ can be negative. We shall have gone far from the
integer-valued dimensions of Euclid.

I.1. The Example of Copper

Correspondent to the simplest fractals, the basic idea is self-similarity, either
exact or approximate. The closely related notions of self-similar fractal or self-sim-
ilar multifractal can be phrased in many ways, but the geophysicist might best
understand them in the context of the distribution of a rare mineral, such as copper.
We first consider high-grade copper, then consider gradually lower grades.

High-grade copper is of course distributed nonuniformly: it concentrates in very
few regions of the world. If one examines one such region in detail, however, copper
continues to be found to be nonuniform: it concentrates in few sub-regions. And so
on. It is reasonable, therefore, to suppose that the relative distribution of high-grade
copper is the same (in the statistical sense) within each copper-bearing region,
whether it is small or large. This being granted, take a large region, and cover it by
a grid of equal “‘cells.” As the cell sizes are made smaller, the total area of the cells
that contain high-grade copper is found to shrink.

Mathematics has long known a construction that follows this process, and
fractal geometry has “tamed” this construction to make it a model of nature. For
example see MANDELBROT (1982), The Fractal Geometry of Nature (FGN). In the
language of fractal geometry, high-grade copper is usefully viewed as “concentrated
on,” or “supported by,” a self-similar fractal set of low fractal dimension.

Next, examine lower grade copper. The fact that it is more widespread in nature
is expressed by its being supported by a fractal set of higher fractal dimension.

Overall, in order to give a full representation of the distribution of copper, it is
seen that fractals are necessary and that no single fractal set is sufficient. A simple
description consists of giving the fractal dimensions corresponding to each of a
sequence of grades, as defined by thresholds varying from 0 to a very high value
that is rarely exceeded.

The overall idea of the preceding paragraph has been combined with the
generalization of the notion of self-similarity from sets to measures, and has thereby
led to the notion of self-similar multifractal measure. To say that a multifractal is
a measure and not a ser is a very important distinction. It will be explained in
Section 3.1. Our work on multifractals was initially concerned with the intermit-
tency of turbulence, and was mostly carried out in the period 1968 to 1976, but it
had started about 1962. My book FGN surveys multifractals on pp. 375-376, but
this survey is overly sketchy and is now obsolete.

1.2. An Interesting Old Quote

The simplest of all multifractals, which is nonrandom. is called binomial and is
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discussed in Section 5. This construction that has long been known to mathemati-
cians, and has been tamed by fractal geometry, to make it a model of Nature. It
happens that the basic circumstances that call for the binomial multifractal mea-
sure are very intuitive, and have nearly been rediscovered in the earth sciences
context described in Section 1.1. Indeed, the geologist DE Wuis (1951) (quoted in
FGN. p. 376) has described them as follows:

“Consider a [body of ore] with a tonnage W and an average grade M. th an
imaginary cut we slash this body into two halves of equal tonnage ;W, differing
in average grade. Accepting for the grade of the richer half (1 + d)M, the grade
of the poorer half has to be (1 —d)M to satisfy the condition that the two
halves together average again M ... A second imaginary cut divides the body
into four parts of equal tonnage LW, averaging (l+d)*M, (1+d)(1—d)M,
(1+d)(1 —d)M, and (1 —d)>M. A third cut produces 2? =8 blocks, namely |
block with an average grade of (1 + d)*M, 3 blocks of (1 +d)*(1 —d)M, 3 blocks
of (1 +d)(1 —d)>M, and one block of (1 —d)*M. One can visualize the contin-
ued division into progressively smaller blocks . .. The coefficient d as a measure of
variability adequately replaces the collective intangibles [dear to those who feel
that ore estimation is an art rather than a science], and statistical deductions
based upon this measure can abolish the maze of empirical and intuitive tech-
niques.”

Of course. de Wijs did not even begin to explore the geometric aspects of his first
sketch of a model, and neither he nor notable followers (including G. Matheron)
had an inkling of fractals or of multifractals, e.g., of the basic notion of fractal
dimension. However, assume that the ore density is independent of grade, making
tonnage equivalent to volume, and allow the (reinterpreted) scheme of de Wijs to
continue ad infinitum. We shall see that this leads to the conclusion that the ore
“curdles” into a binomial multifractal.

1.3. Relative Intermittency in a Context Broader than that of Metals

To broaden the scope of multifractals, let us quote from the subsection on
Relative Intermittency of my book FGN, p. 375 ss.

“The phenomena to which [multi] fractals are addressed ate scattered through-
out this Essay, in the sense that many of my case studies of natural fractals negate
some unquestionable knowledge about Nature.

“We forget in Chapter 8 that the noise that causes fractal errors weakens
between errors but does not desist.

“We neglect in Chapter 9 our knowledge of the existence of interstellar matter.
Its distribution is doubtless at least as irregular as that of the stars. In fact, the
notion that it is impossible to define a density is stronger and more widely accepted
for interstellar than stellar matter. To quote deVaucouleurs, ‘it seems difficult to
believe that, whereas visible matter is conspicuously clumpy and clustered on all
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scales, the invisible intergalactic gas is uniform and homogeneous . . . [its] distribu-
tion must be closely related to ... the distribution of galaxies....

“And in Chapter 10 the pastry-like sheets of turbulent dissipation are an
obviously oversimplified view of reality.

“The end of Chapter 9 mentions very briefly the fractal view of the distribution
of minerals. Here, the use of closed fractals implies that, between the regions where
copper can be mined, the concentration of copper vanishes. In fact, it is very small
in most places, but cannot be assumed to vanish everywhere.

“In each case, [portions of space] of less immediate interest were artificially
emptied to make it possible to use closed fractal sets, but eventually these areas
must be filled. This can be done using a fresh hybrid [namely, a] mass distribution
in the cosmos such that no portion of space is empty, but, [given two] small
thresholds f and 4, a proportion of mass at least 1 —  is concentrated on a portion
of space of relative volume at most 6.

1.4. A Feature of Most Direct Importance in Many Sciences: Many Measures are not
Observable Directly, only Through “Cuis™

The exploration of the earth cannot be carried out fully in three dimensions.
Very often it must follow a straight bore-hole to obtain a straight 1-dimensional
cross-cut through a real system that is intrinsically 3-dimensional. Often flat cuts are
all that is available for inspection. The same constraint is encountered when
turbulence in 3-dimensional space is explored via 1- or perhaps 2-dimensional cuts.
Typically, the positions of these cuts bear no relation to the overall turbulence, and
can therefore be thought of as having been chosen at random.

Consider also the context of strange attractors. Their full natural space has a
very high dimensionality. But they are typically examined via a “Poincaré section”™
by a plane. The position of the plane, again, often bears no relation to the full
attractor, and can be viewed as having been chosen at random. As we shall see by
examining typical cases, the measure observed along a random cut has properties
that are without counterpart in the measures studied in their natural space, and vice
versa. This raises the issue of what can and what cannot be inferred from a cut 10
the whole measure. This issue is extraordinarily important and has motivated our
early work of 1968-1976, especially MANDELBROT (1974).

2. Two Alternative Summaries

The present text begins with introductory material, continues with the binomial
measure (Section 5) and then proceeds to step by step generalizations. One must
wait until Section 8 to initiate a discussion of the cuts. The result is longer than we
would have preferred.



