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Conventional studies of uncertainty, whether in 
statistics, economics, finance or social science, 
have largely stayed close to the so-called “bell 
curve”, a symmetrical graph that represents a 
probability distribution. Used to great effect to 
describe errors in astronomical measurement by 
the 19th-century mathematician Carl Friedrich 
Gauss, the bell curve, or Gaussian model, has 
since pervaded our business and scientific culture, 
and terms like sigma, variance, standard deviation, 
correlation, R-square and Sharpe ratio are all 
directly linked to it. Neoclassical finance and 
portfolio theory are completely grounded in it. 

If you read a mutual fund prospectus, or a 
hedge fund’s exposure, the odds are that 
information will incorporate some quantitative 
summary claiming to measure “risk”. That 
measure will be based on one of the above 
buzzwords that derive from the bell curve and its 
kin.  

Such measures of future uncertainty satisfy 
our human’s ingrained desire to “simplify” by 
squeezing into one single number matters that are 
too rich to be described by it. In addition, they 
cater to psychological biases and our tendency to 
understate uncertainty in order to provide an 
illusion of understanding the world.  

The bell curve has been presented as 
“normal” for almost two centuries, even though its 
flaws have always been obvious to any practitioner 

with empirical sense1. Granted, it has been 
tinkered with using such methods as 
complementary “jumps”, stress testing, regime 
switching or the elaborate methods known as 
GARCH, but while they represent a good effort, 
they fail to remediate the bell curve’s irremediable 
flaws.  

The problem is that measures of uncertainty 
using the bell curve simply disregard the possibility 
of sharp jumps or discontinuities. Therefore they 
have no meaning or consequence. Using them is 
like focusing on the grass and missing out on the 
(gigantic) trees.  

In fact, while the occasional and unpredictable 
large deviations are rare, they cannot be dismissed 
as “outliers” because, cumulatively, their impact in 
the long term is so dramatic.  

The good news, especially for practitioners, is 
that the fractal model is both intuitively and 
computationally simpler than the Gaussian. It too 
has been around since the sixties, which makes us 
wonder why it was not implemented before.  

The traditional Gaussian way of looking at the 
world begins by focusing on the ordinary, and only 
later deals with exceptions or so-called outliers as 

                                            
1 There is very little of the “Normal” in the Gaussian: we 

seem to be conditioned to justify non Gaussianity –yet, it is 
often Gaussianity that needs specific justification. To justify it 
in finance by a Limit Theorem necessitates assumptions that 
the evidence has shown to be very restrictive, like 
independence or short-run memory, as well as other strictures 
that can rarely be verified. Likewise for the Poisson. Indeed 
there are many processes that generate Nonscalable 
randomness. 

More technically, the idea that sums of i.i.d. finite 
variance random variables are Gaussian involves a limit or 
asymptotic behavior. Not only i.i.d observations are not the 
norm in natural life, something that was already observed by 
Yule in 1925, but in the long-run we shall all be dead and 
science is mostly concerned with pre-asymptotic results, 
including the speed at which the limit is reached. It is far, far 
slower than can be deemed acceptable in practice — see the 
Technical Appendix that follows this chapter. All that the 
Central limit Theorem asserts is that the limit is Gaussian 
within a narrow central band, it does not prevent 
nonGaussianity in the tails of the distribution. 
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ancillaries2. But there is also a second way, which 
takes the so-called exceptional as a starting point 
and deals with the ordinary in a subordinate 
manner – simply because that “ordinary” is less 
consequential.  

These two models correspond to two mutually 
exclusive types of randomness: mild or Gaussian 
on the one hand, and wild, fractal or “scalable 
power laws” on the other. Measurements that 
exhibit mild randomness are suitable for treatment 
by the bell curve or Gaussian models, whereas 
those that are susceptible to wild randomness can 
only be expressed accurately using a fractal scale.  

Let us first turn to an illustration of mild 
randomness. Assume that you round up 1,000 
people at random among the general population 
and bring them into a stadium. Then, add the 
heaviest person you can think of to that sample. 
Even assuming he weighs 300kg, more than three 
times the average, he will rarely represent more 
than a very small fraction of the entire population 
(say, 0.3 per cent). Similarly, in the car insurance 
business, no single accident will put a dent on a 
company’s annual income. These two examples 
both relate to the “Law of Large Numbers”, which 
implies that the average of a random sample is 
likely to be close to the mean of the whole 
population. The entire sample theory is based on 
the idea. 

In a population that follows a mild type of 
randomness, one single observation, such as a 
very heavy person, may seem impressive by itself 
but will not disproportionately impact the 
aggregate or total. A randomness that disappears 

                                            

                                           

2 A key feature of the Pareto-Lévy-Mandelbrot fractal 
model is the presence of “jumps.” Since then, in order to 
capture the outliers and conserve the results of neoclassical 
finance, Merton (1976) has “grafted” simplified jumps onto 
the Gaussian. This graft is used heavily in modern finance One 
principal flaw is that data generated from any given 
probability distribution seen ex post can be immediately 
interpreted as a Poisson.  Literally, anything. See Mandelbrot 
(2001) for the discussion on overfitting, and ad hoc 
superpositions. Another way to see the unfitness of the 
Poisson is by testing it out of sample –it fits past data rather 
well, but does not carry forward. 

under averaging is trivial and harmless. You can 
diversify it away by having a large sample.  

There are specific measurements where the 
bell curve approach works very well, such as 
weight, height, calories consumed, death by heart 
attacks or performance of a gambler at a casino. 
An individual that is a few million miles tall is not 
biologically possible, but with a different sort of 
variable, an exception of equivalent scale cannot 
be ruled out with a different sort of variable, as we 
will see next.  

WILD RANDOMNESS  

What is wild randomness3? Simply put, it is an 
environment in which a single observation or a 
particular number can impact the total in a 
disproportionate way. The bell curve has “thin 
tails” in the sense that large events are considered 
possible but far too rare to be consequential. But 
many fundamental quantities follow distributions 
that have “fat tails” – namely, a higher probability 
of extreme values that can have a significant 
impact on the total.  

One can safely disregard the odds of running 
into someone several miles tall, or someone who 
weighs several million kilogrammes, but similar 
excessive observations can never be ruled out in 
other areas of life.  

Having already considered the weight of 1,000 
people assembled for the previous experiment, let 
us instead consider their wealths. Add to the 
crowd of 1,000 the wealthiest person to be found 
on the planet – Bill Gates, the founder of 
Microsoft. Assuming that his net worth is close to 
$80bn, how much would he represent of the total 
wealth? 99.9 per cent? Indeed, all the others 
would represent no more than the variation of his 
personal portfolio over the past few seconds. For 
someone’s weight to represent such a share, he 
would need to weigh 30m kg.  

 
3 Technically, many levels of wildness are distinguished in 

Mandelbrot (1997), ranging from the purely mild to the totally 
wild. Here wild randomness means scalable, or, more exactly, 
absence of a known characteristic scale, about which later.  
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Try it again with, say, book sales. Line up a 
collection of 1,000 authors. Then, add the most 
read person alive, JK Rowling, the author of the 
Harry Potter series. With sales of several hundred 
million books, she would dwarf the remaining 1, 
000 authors who would collectively have only a 
few hundred thousand readers.  

So, while weight, height and calorie 
consumption are Gaussian, wealth is not. Nor are 
income, market returns, size of hedge funds, 
returns in the financial markets, number of deaths 
in wars or casualties in terrorist attacks. Almost all 
man-made variables are wild. Furthermore, 
physical science continues to discover more and 
more examples of wild uncertainty, such as the 
intensity of earthquakes, hurricanes or tsunamis.  

Economic life displays numerous examples of 
wild uncertainty. For example, during the 1920s, 
the German currency moved from three to a dollar 
to 4 trillion to the dollar in a few years. And 
veteran currency traders still remember when, as 
late as the 1990s, short- term interest rates 
jumped by several thousand per cent.  

We live in a world of extreme concentration 
where the winner takes all. Consider, for example, 
how Google grabs much of internet traffic, how 
Microsoft represents the bulk of PC software sales, 
how 1 per cent of the US population earns close to 
90 times the bottom 20 per cent or how half the 
capitalization of the market (at least 10,000 listed 
companies) is concentrated in less than 100 
corporations.  

Taken together, these facts should be enough 
to demonstrate that it is the so-called “outlier” and 
not the regular that we need to model. For 
instance, a very small number of days accounts for 
the bulk of the stock market changes: just ten 
trading days represent 63 per cent of the returns 
of the past 50 years.  

Let us now return to the Gaussian for a closer 
look at its tails. The “sigma” is defined as a 
“standard” deviation away from the average, 
which could be around 0.7 to 1 per cent in a stock 
market or 8 to 10 cm for height. The probabilities 
of exceeding multiples of sigma are obtained by a 

complex mathematical formula. Using this formula, 
one finds the following values:  

 

Probability of exceeding:  
0 sigmas: 1 in 2 times  
1 sigmas: 1 in 6.3 times  
2 sigmas: 1 in 44 times  
3 sigmas: 1 in 740 times  
4 sigmas: 1 in 32,000 times  
5 sigmas: 1 in 3,500,000 times  
6 sigmas: 1 in 1,000,000,000 times  
7 sigmas: 1 in 780,000,000,000 times  
8 sigmas: 1 in 1,600,000,000,000,000 times  
9 sigmas: 1 in 8,900,000,000,000,000,000 times  
10 sigmas: 1 in 130,000,000,000,000,000,000, 
000 times  
and, skipping a bit:  
20 sigmas: 1 in 
36,000,000,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000,000,000,000,000,0
00,000,000,000,000,000, 000 times  

Soon, after about 22 sigmas, one hits a 
“googol”, which is 1 with 100 zeroes behind it.  

With measurements such as height and 
weight, this probability seems reasonable, as it 
would require a deviation from the average of 
more than 2m. The same cannot be said of 
variables such as financial markets. For example, a 
level described as a 22 sigma has been exceeded 
with the stock market crashes of 1987 and the 
European interest rate moves of 1992, not 
counting the routine devaluations in emerging 
market currencies.  

The key here is to note how the frequencies in 
the preceding list drop very rapidly, in an 
accelerating way. The ratio is not invariant with 
respect to scale.  

Let us now look more closely at a fractal, or 
scalable4, distribution using the example of wealth. 

                                            

 

4 Technically for us a fractal distribution defined as 
follows: P>x= K x-α where P>x  is the probability of exceeding a 
variable x and α is the asymptotic power law exponent for x 
large enough. This distribution is said to be scale free, in the 
sense that it does not have a characteristic scale: For x “large 
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We find that the odds of encountering a millionaire 
in Europe are as follows:  

Richer than 1 million: 1 in 62.5  
Richer than 2 million: 1 in 250  
Richer than 4 million: 1 in 1,000  
Richer than 8 million: 1 in 4,000  
Richer than 16 million: 1 in 16,000  
Richer than 32 million: 1 in 64,000  
Richer than 320 million: 1 in 6,400,000  

 

This is simply a fractal law with a “tail 
exponent”, or “alpha”, of 2, which means that 
when the number is doubled, the incidence goes 
down by the square of that number – in this case 
four. If you look at the ratio of the moves, you will 
notice that this ratio is invariant with respect to 
scale. If the “alpha” were one, the incidence would 
decline by half when the number is doubled. This 
would produce a “flatter” distribution (fatter tails), 
whereby a greater contribution to the total comes 
from the low probability events.  

 

Richer than 1 million: 1 in 62.5  
Richer than 2 million: 1 in 125  
Richer than 4 million: 1 in 250  
Richer than 8 million: 1 in 500  
Richer than 16 million: 1 in 1,0005  

                                                                          
enough,” the relative deviation of ( ) ( )nxPxP >>

 

                                                                         

 does not 

depend on x, only on n. Other distributions are non-scalable. 
For example, in the density p(x) = exp[-a x], with tails falling 
off exponentially, the scale will be 1/a. For the Gaussian, the 
scale is the standard deviation. 

The effect that is not negligible is that finite moments 
exist only up to the exponent α. Indeed, in order for the 
function xn x-α--1 to have a finite integral from 1 (say) to 
infinity, one must have n–α<0, that is, n<α. This does not 
allow the Taylor expansions required for Modern Portfolio 
Theory as, for scalable, higher terms are explosive. If α=3, as 
we tend to observe in stocks, the third and higher moments 
are infinite. 

5 There is a problem of “how large” is “large”.  This 
scalability might stop somewhere –but we do not know where, 
so we might consider it infinite. The two statements, “very 
large but I don’t know exactly how large” and “infinitely large” 
look different but are epistemologically substitutable (Taleb 
2007b). There might be a point at which the distributions flip. 

 

We have used the example of wealth here, 
but the same “fractal” scale can be used for stock 
market returns and many other variables –at least 
as a vague lower bound. In other words, this 
method provides an alternative qualitative method 
to the Gaussian. 

Indeed, this fractal approach can prove to be 
an extremely robust method to identify a 
portfolio’s vulnerability to severe risks. Traditional 
“stress testing” is usually done by selecting an 
arbitrary number of “worst-case scenarios” from 
past data. It assumes that whenever one has seen 
in the past a large move of, say, 10 per cent, one 
can conclude that a fluctuation of this magnitude 
would be the worst one can expect for the future. 
This method forgets that crashes happen without 
antecedents. Before the crash of 1987, stress 
testing would not have allowed for a 22 per cent 
move.  Using a fractal method, it is easy to 
extrapolate multiple projected scenarios. If your 
worst-case scenario from the past data was, say, a 
move of –5 per cent and, if you assume that it 
happens once every two years, then, with an 
“alpha” of two, you can consider that a –10 per 
cent move happens every eight years and add 
such a possibility to your simulation.  

Using this model, a –15 per cent move would 
happen every 16 years, and so forth. This will give 
you a much clearer idea of your risks by 
expressing them as a series of possibilities. You 
can also change the alpha to generate additional 
scenarios – lowering it means increasing the 
probabilities of large deviations and increasing it 
means reducing the probabilities. What would such 
a method reveal? It would certainly do what 
“sigma” and its siblings cannot do, which is to 
show how some portfolios are more robust than 
others to an entire spectrum of extreme risks. It 
can also show how some portfolios can benefit 
inordinately from wild uncertainty.  

 
This will show once we look at them graphically in the 
appendix. 
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Despite the shortcomings of the bell curve, 
reliance on it is accelerating, and widening the gap 
between reality and standard tools of 
measurement. The consensus seems to be that 
any number is better than no number – even if it 
is wrong. Finance academia is too entrenched in 
the mild, Gaussian, paradigm to stop calling it “an 
acceptable approximation”.  

Let us repeat: the Gaussian (or Poisson) are 
no approximation. Any attempts to refine the tools 
of modern portfolio theory by relaxing the bell 
curve assumptions, or by “fudging” and adding the 
occasional “jumps” will not be sufficient. We live in 
a world primarily driven by random jumps and 
tools designed for random walks address the 
wrong problem. It would be like tinkering with 
models of gases in an attempt to characterise 
them as solids and call them “a good 
approximation”.  

While scalable laws do not yet yield precise 
recipes, they have become an alternative way to 
view the world, and a methodology where large 
deviation and stressful events dominate the 
analysis instead of the other way around.  

We do not know of a more robust manner for 
decision-making in an uncertain world.  

TABLE: THE GAUSSIAN AND FRACTAL 
MODELS: OBSERVATIONS AND 
CONSEQUENCES  

1 By itself, no single number can characterize 
uncertainty and risk but, as we have seen, we can 
still have a handle on it so long as we can have a 
table, a chart and an open mind.  

2 In the Gaussian world, standard tables show 
that 67 per cent of the observations fall between –
1 and +1 sigma. Outside of Gaussianity, sigma 
loses much or all of its significance. With a 
scalable distribution, you may have 80 percent, 90 
per cent, even 99.99 per cent of observations 
falling between -1 and +1 sigmas. In fractals, the 

standard deviation is never a “typical” value and 
may even be infinite6!  

3 When assessing the effectiveness of a given 
financial, economic or social strategy, the 
observation window needs to be large enough to 
include substantial deviations, so one must base 
strategies on a long time frame. In some situations 
you will never see the properties. 

4 You are far less diversified than you 
assume. Because the market returns in the very 
long run will be dominated by a small number of 
investments, you need to mitigate the risk of 
missing these by investing as broadly as possible. 
Very broad passive indexing is far more effective 
than active selection.  

5 Projections of deficits, performance and 
interest rates are marred with extraordinarily large 
errors. In many budget calculations, US interest 
rates were projected to be 5 per cent for 2001 
(not 1 per cent); oil prices were projected to be 
close to $22 a barrel for 2006 (not $62). Like 
prices, forecast errors follow a fractal distribution.  

6 Option pricing models, such as Black-
Scholes-Merton, are strongly grounded in the bell 
curve in their representation of risk. The Black-
Scholes-Merton equation bases itself on the 
possibility of eliminating an option’s risk through 
continuous dynamic hedging, a procedure 
incompatible with fractal discontinuities7.  

7 Some classes of investments with explosive 
upside, such as venture capital, need to be 
favored over those that do not have such 
potential. Technology investments get bad press; 
priced appropriately (in the initial stages) they can 

                                            
6 Even in “finite variance” cases where α >2, we just can 

no longer rely on variance as a sufficient measure of 
dispersion. See the Technical Appendix and also Cont (2005) 
for an illustration of how a cubic exponent mimics stochastic 
volatility and can be easily mistaken for it. 

7 Taleb (2007a) shows how Ito’s lemma no longer applies 
and how we can no longer perform the operation of dynamic 
hedging to compress the risks. 
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deliver huge potential profits, thanks to the small, 
but significant, possibility of a massive windfall8.  

8 Large moves beget large moves; markets 
keep in memory the volatility of past deviations. A 
subtle concept, fractal memory provides an 
intrinsic way of modelling both the clustering of 
large events and the phenomenon of regime 
switching, which refers to phases when markets 
move from low to high volatility9. 

TABLE: COMPARISON BETWEEN 
SCALABLE AND NONSCALABLE 
RANDOMNESS 

 

 

Non scalable  

 

Scalable 

 

The most typical 
member is mediocre 

 

The most ‘typical” is 
either giant or dwarf, 
i.e. there is no typical 
member 

Winners get a small 
segment of the total pie 

Winner-take-almost-all 
effects 

Example: Audience of 
an opera singer before 
the gramophone 

Today’s audience for 
an artist 

More likely to be found 
in our ancestral 
environment 

More likely to be found 
in our modern 
environment 

Subjected to gravity There are no physical 
constraints on what a 
number can be 

Corresponds (generally) 
to physical quantities, 

Corresponds to 
numbers, say wealth 

                                            
8 The exact opposite applies to business we call “concave” 

to the large deviation, such as banking, catastrophe insurance, 
or hedge-fund arbitrage of the type practiced by Long Term 
Capital Management. 

9 This power-law decaying volatility differs markedly from 
the exponentially declining memory offered by ARCH 
methods.  

i.e. height 

Total is not determined 
by a single instance or 
observation. 

Total will be 
determined by a small 
number of extreme 
events. 

When you observe for a 
while you can get to 
know what’s going on 

It takes a long time to 
know what’s going on 

Tyranny of the 
collective 

Tyranny of the 
accidental 

Easy to predict from 
what you see to what 
you do not see 

Hard to predict from 
past information 

History crawls History makes jumps 

TECHNICAL APPENDIX 
LARGE BUT FINITE SAMPLES  
AND PREASYMPTOTICS 

Ever since 1963, when power law densities 
first entered finance through the Pareto-Lévy-
Mandelbrot model, the practical limitations of the 
limit theorems of probability theory have raised 
important issues. Let the tail follow the power-law 
distribution defined as follows: P>x= K x–α where 
P>x is the probability of exceeding a variable x and 
α is the asymptotic power law exponent for x large 
enough. If so, a first partial result is that the 
largest of n such variables is given by an 
expression (“Fréchet law”)that does not depend on 
α. This maximum is well-known to behave like 
n1/α. A second partial result is that the sum of n 
variables is given by an expression that — to the 
contrary — does depend on the sign of α–2. 

If α > 2, the variance is finite — as one used 
to assume without thinking. But what does the 
central limit theorem really tell us? Assuming 
EX=0, it includes the following classical result: EX 
is finite and there exists near EX a central bell 
region in which the sum is increasingly close to a 
Gaussian whose standard deviation behaves 
asymptotically like n1/2. Subtracting nEX from the 
sum and combining the two partial results, one 

 6 



 

finds that the relative contribution of the largest 
addend behaves like n1/α–½. In the example of 
α=3, this becomes n–1/6. Again asymptotically for 
n→∞, this ratio tends to 0 — as expected — but 
the convergence is exquisitely slow. For 
comparison, examine for EX≠0 the analogous very 
familiar ratio of the deviation from the mean — to 
the sum if the former behaves like the standard 
deviation times n1/2. The latter — assuming EX≠0 
— behaves like nEX. Therefore these two factors’ 
ratio behaves like n–1/2. To divide it by 10, one 
must multiply n by 100, which is often regarded as 
uncomfortably large. Now back to n–1/6: to divide it 
by 10, one must multiply n by 1,000,000. In 
empirical studies, this factor is hardly ever worth 
thinking about. 

Now consider the — widely feared — case 
α<2 for which the variance is infinite. The 
maximum’s behavior is still n1/α, but the — 
subtracting nEX —sum’s behavior changes from 
n1/2 to the “anomalous”n1/α. Therefore, the relative 
contribution of the largest addend is of the order 
n1/α–1/α=n0. Adding all the bells and whistles, one 
finds that the largest addend remains a significant 
proportion of the sum, even as n tends to infinity. 

Conclusion: In the asymptotic regime tackled 
by the theory, n0 altogether differs from n–1/6, but 
in the preasymptotic regime within which one 
works in practice — especially after sampling 
fluctuations are considered — those two 
expressions are hard to tell apart. In other words, 
the sharp discontinuity at α=2, which has created 
so much anguish in finance — is replaced in 
practice by a very gradual transition. 
Asymptotically, the Lévy stability of the Pareto-
Lévy-Mandelbrot model remains restricted to α<2 
but preasymptotically it continues to hold if α is 
not far above 2. 

FIGURES 

The next two figures show the representation 
of the scalable in the tails. 

 

Figure 1 Looking at a distribution. Log P>x = 
-α Log X +Ct  for a scalable. When we do a log-log 
plot (i.e., plot P>x and x on a logarithmic scale), 
as in Figures 1 and 2, we should see a straight line 
in the asymptote. 

 

Figure 2 The two exhaustive domains of 
attraction: vertical or straight line with slopes 
either negative infinity or constant negative α. 
Note that since probabilities need to add-up to 1 
there cannot be other alternatives to the two 
basins, which is why we narrow it down to these 
two exclusively –as we said the two paradigms are 
mutually exclusive.  
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