Stable Fractal Sums of Pulses: the General Case. *f

R. Cioczek-Georges B.B. Mandelbrot
Yale University Yale University

April 27, 1995

Abstract

The paper introduces new classes of stable self-affine stochastic processes with sta-
tionary increments and global (long-range) dependence. They are fractal sums of pulses
(FSP) for which the pulses are such that the time of occurrence, duration and amplitude
are independent random variables. It is shown that different pulse shapes give rise to
different FSPs. These FSPs differ from the known self-affine processes with station-

ary increments. Path properties of FSPs are described as well as partial domains of
attraction.
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1 Introduction

The processes obtained in this paper are Lévy stable with the scaling exponent o, 0 < & < 2,
and have stationary increments. That is, {X (¢t +b) — X (b), t > 0} < {X()—-X(0), t >0}
for all b > 0, where “£7 denotes equality of finite-dimensional distributions. They are also
self-affine, therefore, fractal. That is, there exists an “affinity exponent” H > 0, such that
{X(at), t > 0} < {a® X (t), t > 0} for all @ > 0. Qur processes are stable fractal sums of
pulses (SFSP), because they are sums of an infinite number of pulses occurring according
to some Poisson random measure. The value of X (t) — X (0) is defined as the sum of the
changes in the pulse amplitude between times 0 and ¢. The pulses’ shape is determined by
a prescribed “template” f, which is a function supported in the interval [0, 1]. To obtain a
pulse, the template is translated by 7 € R, “stretched” vertically by A # 0 and “stretched”
horizontally by w > 0. Hence, 7, A and w correspond to the time of pulse birth, vertical
scaling and width (duration) of a pulse, respectively. These quantities are random and
determined by the scaling Poisson intensity shown in equation (2.1).

For an SFSP to be well-defined (in the sense of a.s., possibly conditional, convergence),
Section 2 gives sufficient conditions on the template f that are analogous to ones considered
in Cioczek-Georges and Mandelbrot (1994a) and (1994b) for the micropulse construction
of fractional Brownian motion (FBM). Those conditions allow for great diversity of pulse
shapes and yield 0 < H < max(1l,1/a). It is known that for a-stable processes with sta-
tionary increments, the affinity exponent H must satisfy 0 < A < max(1, 1/a). Moreover,
for a < 1 there is a unique process with H = 1/a; it is Lévy stable motion (LSM), which
has independent increments. Hence, the SFSPs yield the maximal range of H for o < 1,
and “almost” yield the maximal range for & > 1. The specific value of H for a given SFSP
depends on the distribution of the pulse width.

Section 3 proves that the processes obtained in this paper are new, that is, differ in the
sense of finite-dimensional distributions from previously described a-stable, H-self-affine
processes with stationary increments. Section 3 also examines sample path properties. For
H > 1/, there exists a sample continuous version of a process as for all self-affine processes
with stationary increments in this case; for H < 1/a, the sample paths are highly irregular,
namely, nowhere bounded with probability one.

Section 4 deals with partial domains of attraction. We describe a large class of sums of
pulses processes which are attracted to a given SFSP. The novelty is that those pulses are

not self-affine but governed by a Poisson measure with an intensity that differs from the



scaling intensity by a slowly varying factor.

A different broad class of processes related to the SFSPs is the partly random fractal sums
of pulses (PFSP). They are investigated in Mandelbrot (1995a) and (1995b), together with
the new notion of “lateral attraction” for processes. They are not Lévy stable themselves,

and are in the domain of lateral attraction of either FBM or LSM.

2 Definition and Existence of a Class of SFSPs

In the pulse address space 4 = Rg x R x R, where Ry = R\{0} and Ry = (0,0), each
pulse is represented by a point with coordinates A, and w. Once again, they correspond,
respectively; to the vertical scaling, time of birth and width of a pulse. Fix a template
function f, where f is supported in [0, 1] and determines the shape of pulses we use in the

construction. Then, at time ¢, the amplitude of an f-shaped pulse, starting at 7 and ending

(%)

The number of pulses with a given set of coordinates is determined by a Poisson random

at 7 4+ w, equals

measure. Let A = B(A) be the Borel o-field on A. We consider a Poisson random measure
N on (4, .A) with mean n given by
A" ly=0=lg drdw  if A > 0,
(2.1) n(dA, dr,dw) =
A" w1 d drdw if A < 0,
forT€ R, wé€ Ry,andsome 0 < a <2, min(l-a,0) <8< 1, d,">0,d+">0.
When a = 1, let us simply assume, for reasons which will become apparent later, ¢ = ¢”.
Adding up pulses correspond to the integration of pulse amplitude with respect to the
Poisson measure. Hence, the sum of f-shaped pulses described in the Introduction is defined
by
t— -
2.2) / A [f ( T) y (—T)] N(d), dr, dw).
A w w

The question arises whether the above integral is well-defined, i.e. in what sense it is

finite a.s. To answer this, we use an equivalence between integrals with respect to Poisson
measures and stable integrals.
A stable integral [ g(z)M(dz) is a stable random variable with the characteristic func-

tion




Fexp(it [ g(z)M(dz)) =

exp{— [z ltg(z)|*(1 — if(z)sgn(tg(z)) tan Z2X)m(dz)}, fa#1, 0<a<?,

2.3
U explc Jo o)1 + 20()sgaltoe) nlto (o) () iF =1,
where (E, £, m) is a o-finite measure space, §: E — [-1, 1] is a measurable function, called
skewness intensity, and a function g is integrable, i.e. satisfies [;|g(z)|*m(dz) < oo for
0 < o < 2, and additionally, [g|g(z)(In|g(z)|)8(z)|m(dz) < oo for @ = 1. M is an o-
stable measure with the control measure m and skewness intensity (. It can be defined
by M(A) = [g I[A]M (dz) for all m-finite sets A € £. For details as well as alternative
definitions of stable measures and integrals see Samorodnitsky and Tagqu (1994)). Theorem
3.12.1 of this monograph relates integrals with respect to a Poisson random measure to those
with respect to a stable measure.

Bearing in mind the possible Poisson integral representation of a pulse process it is more
convenient for us to deal with an equivalent in distribution (up to a constant C, defined in

Theorem 3.12.1 of Samorodnitsky and Tagqu (1994)) stable integral:

(2.4) X(t) :=/E[f (t;r> —f(%)] M(dr, dw),

where M is an a-stable random measure on (E, ) := (R x R4+, B(R x Ry)) with constant

skewness 8 = (¢ — ") /(¢ + ¢") and control measure m given by
d+

(2.5) m(dr, dw) = w % ldrdw.

It is clear that the integral in (2.2) converges a.s. iff the corresponding stable integral
in (2.4) is well-defined, i.e. when its integrand is integrable in the sense described below
(2.3). However, even if this Poisson integral exists, its convergence is conditional in the case

a > 1, as in the following:

TaeoreEM 2.1 If
(2.6) -/E ‘f(l — T) -~ f(%r) ,aw'e'ldrdw < 00,

w

then the process {X (t), t > 0} given by (2.4) is well-defined and its finite-dimensional
distributions equal those of {CoX'(t), t > 0}, where
JaMF(5F) ~ F(SP)] N (dA, dr, dw) fa<l,

X't) =
limc—>0 Zz—oo f(—c,c)c fE‘- ’\ [f (t_:,;z) - f (:1_-})] N(d’\’ dT, dw) Zfa Z ]-’



and E; = {u: 27 < |f((t = 7)/w) = f(-7/w)| < 271}, i= —o0,..., +c0.
Both processes have a-stable stationary increments and are self-affine with the ezponent

H = (1 - 6)/a. In particular, the scale parameter of X (t) is proportional to t(1=9)/a,

ProOF: Since [ |f((t~7)/w)— f(—7/w)|*m(dr,dw) = 179 [ |f((1-7)/w)= f(—T/w)|*
m(dr,dw), the first statement is a straightforward corollary from Theorem 3.12.1 of
Samorodnitsky and Taqqu (1994). (When a = 1, the additional condition for the existence
of a stable integral involving a logarithmic term is always satisfied under the assumption
d =c" ie. B =0.) Note also that the compensating constants for the Poisson integral
can be taken 0 for @ > 1 since [z [f((t — 7)/w) — f(~7/w)]m(dT,dw) = 0 in this case and
B =0 fora=1.

Because stable integrals are linear functionals of their integrands, the finite-dimensional
distributions of both processes are also a-stable. Their multidimensional characteristic
functions are again of the form (2.3) with g(z) replaced by a linear combination of the
respective integrands. Using this fact and an appropriate change of variables it is easy to
establish self-affinity as well as stationarity of increments for {X (¢), t > 0}, and hence for
{X'(t), t > 0}. This is where the assumption § = 0 for @ = 1 plays the crucial role.

The exact value of the scale parameter raised to power « for X (t) equals again [ |f((t—
7)/w) — f(—=7/w)|*m(dr, dw) which is clearly proportional to t!=¢. W

The next proposition specifies conditions on f which imply (2.6).

PRroPOSITION 2.1 (i) Let a function f, with the support in [0, 1], be Holder continuous in

[0,1] with an ezponent n > 0, i.e.,
|f(z) = fFy)l < Mlz —y|"

for some M > 0 and any z,y € [0,1]. Then (2.6) holds for max(0,1 - an) < 8 < 1. Ifin
addition f(0) = f(1) =0, then (2.6) holds for 1 —an < 6 < 1.
(ii) Let f be a step function, i.e. there existsa; € R, 1 =1,2,...,k € N, such that

k

f(z) = Za;][s;_l <z <sil,

=1

where 0 = sg < $; < ...< sg = 1. Then (2.6) holds for 0 < 8 < 1.

Proor: In the proof of the first part of (i) use the boundedness of f to evaluate the
integral in (2.6) over the regions {(r,w): 0 < (1 -7)/w < 1, —7/w < 0} and {(r,w) :



1< (l-7)/w, 0 < —7/w < 1}, and use Holder continuity in the region {(r,w): 0 <
(1-7)/w <1, 0 < —r/w < 1}. In the proof of the second part of (ii), note that
f(@E=7)/w)= f((t-7)/w) — f(0) and —f(—7/w) = f(1) — f(—7/w) respectively in the
above first two regions, and then use Holder continuity. To prove (ii), notice that in the
region {(r,w): 0< (1-71)/w< 1, 0 < —7/w < 1}, when w is large enough, i.e. such that
1 < min;(s; — s;—1)w, the integrand (for fixed w) is non-zero in at most k intervals of the
length 1. Hence, for L = 1/ min;(s; — si—1),
/Loo /lciw lf(l — T) - f(—;:) ’aw_a'ldrdw < /Loo km?,xla; — ai_1[*w™ " dw < oco.

w

In other regions again use the boundedness of f. W

COROLLARY 2.1 Ifa function f, with the support in [0, 1], is piecewise Hélder continuous in
[0, 1] with an ezponent > 0, i.e. it has a finite number of jumps and is Hélder continuous

in the intervals between jumps, then (2.6) holds for max(0,1—an) <8 < 1.

REMARK 2.1 Proposition 2.1 and Corollary 2.1 show that we are able to construct SFSP
processes with any H and « satisfying 0 < H < max(1,1/a).

REMARK 2.2 For fixed & and Hélder exponent 7 of f continuous on (0, 1), the self-affinity
constant H can be any number, depending on 8, from the interval (0,7) for {X(¢), t > 0}
obtained as a sum of continuous (on R) pulses, and from the interval (0, min(n, 1/a)) for
{X(t), t > 0} obtained from the pulses with discontinuities at the end points. Hence, the
parameter H covers different regions for & > 1 depending on the pulse shape, and continuous
templates allow for bigger range of H, i.e. also for H > 1/« (ultimately 0 < H < 1). On the
other hand, for @ < 1 these are the simplest step functions which may produce H greater
than 1 (in this case 0 < H < 1/c). (For detailed treatment of rectangular (up-and-down)

sums of pulses see Cioczek-Georges et al (1995).)

3 Properties and Examples of Stable SFSPs

The main topic of this Section is comparison of SFSPs with other known stable processes.
We prove that SFSPs are indeed new processes and we also determine their path behavior.
Examples at the end of the Section include two specific triangular shape templates which
inspired current investigations.

Clearly, {X (¢), t > 0} constitutes a different stable process for different values of stable

exponent a, or intensity 3, or self-affine constant H. The question we must answer is



whether for fixed admissible parameters «, ¢/, ¢”, and 8, hence also fixed 3, H, and the
measure m, the process {X (t), t > 0} is indeed different from other known stable processes
with the same values of «, 3, and H, i.e. whether or not their finite dimensional distributions
are the same. To address this problem we look at two-dimensional characteristic functions
of (X(s),X(t)), 0 < s < t, more precisely, at so called spectral measures I', determined by
these vectors.

In general, for an a-stable vector (X,Y) we have:

Eexp(i(§1 X +&2Y)) =
exp{— [s, [€151 4 &252|%(1 — ¢ sgn (€151 + €252) tan 5F)T'(ds)
+i(&1p1 + E2p2) } ife#1,

exp{~ [, 16151 + &252|(1 + i2 sgn (€152 + &252) In [€151 + E252|) T (ds)
+i(E1p1 + Eapa) } if @ =1,
where the unique finite measure I" (called the spectral measure) is defined on Borel sets of the
unit circle Sz and p;, g2 € R are the location parameters. In our case, since I' is symmetric
for @ = 1, the logarithmic term vanishes. Also y; = p2 = 0. To determine I' for (X (s), X (t))
it is necessary to use a special change of variables transforming the form of the characteristic
function of [ (& (f((t —7)/w) — f(—7/w))+&(f((s — 7)/w) — f(—7/w)))M(dr,dw) as in
(2.3) into the form involving the spectral measure. For details look at Section 3.2 (in
particular, formula (3.2.4)) in Samorodnitsky and Taqqu (1994). Here, we state only that
subsets of S; where I' is concentrated are determined by different values of the ratio
F&H -5
Fe58) - £ (5)

This ratio equals sy/s; for some point (s;,s2) € Sz. Note also that point (s1,s2) (and,

if B # %1, also its antipodal counterpart —(sy, s2)) is an atom of I' iff the above ratio is
constant on a subset of F¥ with positive measure m.

Now we are ready to make two assertions about I'.

1. Notice that the set of (7, w)’s for which f((t —7)/w)~ f(—7/w) =0and f((s—7)/w) -
f(=7/w) # 0, and also the set for which f((t — 7)/w) — f(—7/w) # 0 and f((s —
7)/w) — f(—7/w) = 0 have positive measure m. Hence, ' has atoms at %(1,0) and
+(0,1).

2. Similarly, T has atoms at +(1/v/2,1/v/2) (corresponding to f((t — r)/w) — f(—7/w) =
[t =7)/w) = f(=7/w) #0).



REMARK 3.1 The above facts also follow from more intuitive reasoning involving pulse
representation. For example, pulses whose amplitude is different at 0 and s, but the same
at 0 and t, contribute to the independent from X (t) part of X (s), hence, cause I" to be
concentrated at #(1,0) (Fact 1); these which do not change between s and ¢ but change
between 0 and s (i.e. start before 0 and die in (0,s)) add +(1/+/2,1/+/2) to the support of
T (Fact 2). '

The next theorem draws conclusions from the above facts. In the range of admissible o
and H, it compares {X (t), ¢t > 0} to other a-stable H-self-affine processes with stationary
increments, namely to stable Lévy motion (with independent increments) with H = 1/a,
log-fractional stable motion, also with H = 1/« but defined only for a > 1, and linear
fractional stable motions (LFSM) {Lq,f,4(t), t > 0} defined for0 < H < 1, H # 1/a, |a|+
|6] > 0 (cf. Samorodnitsky and Taqqu (1994)).

THEOREM 3.1 For fired admissible values of parameters a and H, the dependence struc-
tures of an SFSP {X (t), t > 0} is different from that of the following a-stable H-self-affine
processes with stationary increments: stable Lévy motion, log-fractional stable motion, and
LFSM with any a,b, |a| + |b| > 0.

ProoOF: Stable Lévy motion, as a unique a-stable process with independent stationary
increments (hence, with the spectral measure of two-dimensional distributions concentrated
at £(0,1) and £(1/v/2,1/+/2)) is clearly different from {X (t), t > 0} with H = 1/a. Sato
((1992)) described the spectral measure of (Lq f,4,(5), La,H,65(t)) depending on a, b. It
always has an absolutely continuous part and possibly a discrete part. However, there are no
atoms at £(0, 1) which contradicts Fact 1 for {X (t), ¢ > 0}. Using an argument similar to
one of Sato, one can show that log-fractional stable motion has only absolutely continuous
spectrum and must differ from {X(t), ¢t > 0} with H =1/a. 1
Now we describe sample paths of SFSPs.

THEOREM 3.2 For fized admissible values of parameters o and H, and function f satisfying
assumptions of Proposition 2.1 or Corollary 2.1, when 0 < H < 1/a, sample paths of an
SFSP {X(t), t > 0} are nowhere bounded (i.e. unbounded on every finite interval) with
probability one, and when 1/a < H(< 1), {X(t), t > 0} has a sample continuous version.

PRrooF: Let us first point out that, by Kolmogorov’s moment criterion (cf., for example,

Billingsley (1968), p. 95-97), the last statement is true for any a-stable H-self-affine process



with stationary increments such that 1/a < H < 1, hence, also for {X (¢), ¢ > 0}.
To prove the first statement we use the fact that if an a-stable process with an integral

representation { [ f(t,u)M(du), t € T'} is sample bounded then, necessarily,

sup | sup |f(t, u)|*m(du) < oo,
T*CcT JE teT*

where T™* is any countable subset of T. Moreover, a stable process is sample bounded with
positive probability iff it is sample bounded with probability 1 (cf. Samorodnitsky, Taqqu
(1994), Corollary 9.5.5 and Theorem 10.2.3).

For 8 > 0, we will show that

t—T1 -\ |“
o (59 (E)
(1) RxRy te’lP‘ ! w / w
for T* = QN 1, where Q is the set of rational numbers and I = (a, a +2b) is a finite interval
in (0, 00). Indeed,
t—T1 —T\|[¥
(5 -15)
w w
t—T1
(%)
a+b 5
= sup|f(s)|°’/ dT/ dww™?! = oo,
s a 0

which proves that {X(¢), ¢ > 0} is unbounded on 7. N
REMARK 3.2 When o < 1 (H < 1/a), sample paths of SFSP processes are nowhere

wldrdw = oo

w9V drdw

/ " sup
RXR+ teT*

a+b b
> / dr | dwsup
a 0 teT*

-
w=0-1

bounded with probability one. When « > 1, sample paths are nowhere bounded with
probability one for 0 < H < 1/a and there exists a sample continuous version of the
process for 1/a < H < 1.

Note that sample paths in general cannot be used to discriminate between the processes
listed in Theorem 3.1 and {X(t), ¢ > 0}. The only exception is a-stable Lévy motion
(H = 1/a < 1) whose sample paths possess discontinuities only of the first order. For
1/a < H < 1 this is implied by the general rule stated in the proof above, but for H < 1/«
such a general rule does not apply. There exist, in fact, processes for H < 1/« with more
regular sample paths. For example, sub-Gaussian processes (with FBM as the Gaussian
process components) always have sample continuous version, and substable processes with
stable Lévy motions as stable process components have only first order discontinuity (cf.
Kéno and Maejima (1991)). More sophisticated examples based on a construction due to

Kesten and Spitzer can be found in Samorodnitsky and Taqqu (1994).



REMARK 3.3 It is clear that the differences in the dependence structure of SFSP pro-
cesses with the same fixed admissible parameters come from using various template func-
tions f. Nevertheless, it is difficult to give a sufficient condition for differentiation between
SFSPs only in terms of fs since it is an “average” of f (its integral) which is used rather
than f itself. This is why to discriminate between SFSPs in the examples below we use the
technique developed for the proof of Theorem 3.1, i.e. we compare the spectral measures

of two-dimensional characteristic functions.

EXAMPLES

1. The first example of steble SFSP processes constitute cylindrical pulse processes
introduced in Cioczek-Georges et al (1995). The template is the indicator of [0,1] and
SFSPs are defined for 0 < 8 < 1.

2. The right and isosceles triangles are two shapes satisfying the assumptions of Propo-
sition 2.1 (i) with n = 1. The right triangular (semi-conical) pulse starts with a jump (a
discontinuity) and then décays linearly; the isosceles triangular (conical) pulse increases
linearly to a certain point and then decreases with the same rate. According to Propo-
sition 2.1 (i), the fractal sum of semi-conical pulses process {X,(t), t > 0} is defined for
max (0, 1-a) < 8 < 1 and the fractal sum of conical pulses process {X3(¢), ¢ > 0} is defined
for0< < 1.

The spectral measure I'; of (X;(s), X1(t)), 0 < s < t, is concentrated only in the first
and the third quadrants of the circle Sy, as T’y of (X2(s), X2(t)) is also distributed in the
second or the fourth quadrant. This comes from the fact that f((s — 7)/w) — f(—7/w)
and f((t — 7)/w) — f(=7/w), for f(z) = (1 — 2)I[0 < z < 1], cannot be of the opposite
signs, as they are of the same sign and of the opposite signs on the sets with positive
measure m for f(z) = (1/2 - |z — 1/2))I[0 < z < 1]. Hence, for fixed parameters o, 8
and ¢, c”, {X1(t), t > 0} and {X3(t), t > 0} are different o-stable (1 — 8)/o-self-affine
processes with stationary increments. They also differ from the cylindrical pulse processes
in Example 1. This follows from the fact that the respective spectral measures for those
processes are purely discrete and concentrated at 6 points +(0,1), +(1,0), £(1/v?2, 1/v?2).
On the other hand, both I'; and T'; have continuous parts, corresponding, for example, to
f((s=1)/w) — f(-1/w) = —s/w and f((t - 7)/w) - f(-7/w) = —(w+T)/w.

3. Other shapes which may be used in pulse constructions are discussed in Cioczek-

Georges and Mandelbrot (1994b). They include, for example, the singular Cantor distri-

10



bution function (or rather its part supported in [0,1]) which is Holder continuous with
n < log2/log3. The complicated respective spectral measure for an SFSP obtained from

this template features a countable number of atoms.

4 SFSP Domain of Attraction

We describe a part of the domain of attraction of a prescribed SFSP of the form defined in
Section 2.

We say that a process {Y'(t), t > 0} with stationary increments belongs to the domain
of attraction (DOA) of a process {X (t), t > 0} if finite dimensional distributions of suitably
normalized. {Y (ut), ¢ > 0} converge, as © — oo, to those of {X (t), ¢ > 0}.

Usually, the concept of DOA is defined for stationary sequences. However, the equality
Y(ut) = ¥, (Y(5) - Y (5 — 1)), with Y(0) = 0, for ut € Z, makes it obvious that the
definition of DOA’s extends to processes with stationary increments.

When the limit {X (¢), t > 0}, with non-degenerate X (1), satisfies some mild continuity

(in law) conditions, the analytic form of normalizing constants is known. For example, if

Y=l 4y, usm
and the process {X (¢), ¢t > 0}, with X (0) = 0, is H-self-affine and has stationary increments,
then norming function e is regularly varying with index H. In this case, moreover, c(u)
is o(a(u)) and hence can be omitted. Indeed, H > 0 and the process {X(t), t > 0} is
continuous in probability, so that the result in Lamperti (1962) applies giving the form
of a (cf. also Vervaat (1986), (1992), or Bingham et al (1987), p. 356). The statement
about c(u) easily follows from the fact that X (0) = 0. Thus, we are looking for processes

{Y (t), t > 0} with stationary increments, which are self-affine “in the limit,” i.e. satisfy

Y (ut) d

(4.1) W L(0) = X(t), U — 00,

for some slowly varying (at co) function L.

Given an SFSP process, as defined in Section 2, we restrict our exploration of its DOA to
processes {Y(t), t > 0} with Y(¢) of the form (2.2), where integration may be conditional.
Each pulse is a translated, horizontally and vertically rescaled template function and the
template f is the same as in the limiting SFSP {X(t), ¢ > 0}. This is not a constraint
since a proper change of variables can always make the integrand of Y (ut) independent from

the variable u (cf. the equality leading to (4.3)). The Poisson measure Ny and intensity

11



ny (d), dr,dw) = ENy(dA, dr,dw) remain to be specified. The question is: what shape
can they take to ensure convergence (4.1)7 In other words, how much can we modify the
intensity n given by (2.1) used to define the SFSP {X (¢), t > 0}?

Let {X(t), t > 0} be an SFSP with an admissible template function f and fixed pa-
rameters 0 < @ < 2, min(l —,0) < 9 < 1, " >0, +" >0, ie. {X(2),t > 0}
is well-defined for these values (condition (2.6) of Theorem 2.1 holds). We consider the
following general form of ny:

L (A) A= Ly (w)w=? " dAdrdw if A >0,
(4.2) ny (dA, dr,dw) =

LYGANA|=e " o (w)w= 0 dAdrdw if A < 0,
for r € R, w € Ry, where fixed @ and 0 are the same as for the limiting {X(¢), t > 0},
and L{, LY, and L, are positive slowly varying measurable functions. We also assume that
the process {Y'(¢), t > 0} with the same f, «, and 8 is well-defined, i.e. that the functions
Ly, Li(A) := Li(A)I[A > 0]+ LY(JA)I[A < 0], and L, are such that the Poisson integral of
A(f((t = 7)/w) = f(—7/w)) with respect to Ny converges (possibly conditionally, and with
zero compensating constants which is implied by the form of n, in 7 under strong enough
integrability conditions).

Let us comment on the form (4.2) of the intensity ny. The fact that the measure has a
product form in the variables A, 7, and w mirrors the independence between these variables
assumed in the sum of pulses construction. Lebesgue measure in 7 ensures stationarity
of increments for {Y(t), ¢t > 0} in the same way as for {X (¢), ¢ > 0}. We modified the
intensity measure n of {X(t), ¢ > 0} in variables A and w by allowing regular variation. If
one thinks of sum of pulses processes in terms of its “moving average” structure, then L,
changes random innovations to non-stable and L, modifies the dependence structure, while
the coefficients (f) remain unchanged.

At £ € R, the logarithm of the characteristic function of Y (ut)/(u¥ L(u)) equals

. t — -
lnEexp(zuHE(u) /A,\ (f (" - "') iy (i)) Ny (dA, dr, dw))
= /A (FAU (=) /)= T (=[N [F L) _ 1yny, (4N, dr, duw)

= /A(eifz\(f((ut—f)/uI)—f(—f/w))/(uHL(u)) — 1)Ly (M)A Ly (w)w™ o tdAdrdw
nI-—&—aHL—a(,u) / (eiEz\(f((t—‘r)/w)—f(""'/w)) — ]_)
A

(4.3) L1 O L(w)) A~ Ly (uw) w0 dAdrdw,
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where the last equality follows from a simple change of variables. Note that nl=%~2f =1
since H is the self-affinity exponent of the process {X(¢), t > 0}. If it is permissible to
change the order of integration and the limit in u, then the sufficient condition for the
expression in (4.3) to approach the logarithm of the characteristic function of X (¢) is

Ly(Au# L(w)) Ly (vw)
L& (u)

(4.4) = I >0+ "T'[A < 0], u — 00,

for any A € Ro,w > 0.

When (4.4) holds and one of the functions L; or L3 is constant then the other one must
be slowly varying since L is a slowly varying function. Hence, the assumption that the
density of n, is regularly varying in variables A and w with the same exponents as their
powers in the density of n is not as restrictive as it would seem. On the other hand, given
slowly varying functions L, and Lo, does there exists an L which satisfies (4.4)7 It turns

out that the answer is yes.

PROPOSITION 4.1 For any slowly varying functions L, and Lo, there exists a slowly varying
function L such that

(45) LI(UHL(U))L2(U)

Le(u)

-1, U — 0.

Proor: Consider a regularly varying function A(y) := y*(L,(y))~! for y > 0. Then,
by Theorem 1.5.12 of Bingham et al (1987), p. 28, h has an asymptotic inverse g, i.e.
h(g(z)) ~ g(h(2)) ~ z as z = oo, and g is regularly varying with index 1/c, i.e. there
exists a slowly varying L* such that g(z) = z!/%L*(z). Hence, function L* satisfies
(L*(2))*(L1(2Y/9L*(2)))™* ~ 1. It is determined uniquely to within asymptotic equiva-
lence. Define L(u) = (Lg(u))Y/*L*(u*Ly(u)). We have

i B L)L L) L)
u—+00 L« (u) u—+co (L"‘ (uHaLg (u)))" v—+o0 (L* (U) ) a

:]_,

and the proposition holds. B

Obviously, scaling function L defined in the proof of Proposition 4.1 by ¢/*/ (or ¢"1/¢)
makes the limit in (4.5) equal ¢/ (or ¢”). This and slow variation of L, and L, imply that
there exists L such that (4.4) holds, and hence also under certain “regularity conditions”
(4.1) holds.

THEOREM 4.1 Fiz 0 < o < 2 and 0 < 0 < max(l,1/a). Let a function f satisfy as-

sumptions of Proposition 2.1 or Corollary 2.1 and slowly varying (measurable) positive
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Junctions L, and Ly be bounded on (0, M] for some M > 0. Then a sum of pulses pro-
cess {Y (t) = [4 Mf((t — T)/w) — f(—7/w))Ny(dA, dr,dw), t > 0}, with ny(dA,dr,dw) =
ENy(dA,dr,dw) given by (4.2), is in the domain of attraction of an SFSP {X(t) =
JAA(f((t = 1)/w) — f(—7/w))N(dA, dr,dw), t > 0}, with n(d),dr,dw) = EN(d),dr,dw)
given by (2.1).

Proor: Under the above assumptions, the Poisson integral {Y (t), ¢t > 0} exists as is easy
to check by following the proof of existence of stable Poisson integrals in Samorodnitsky and
Taqqu (1994), pp. 159-167. Also these assumptions are strong enough to allow to use the
Lebesgue Dominated Convergence Theorem and to change order of integration and limit in

u in (4.3). The rest of the statement is an obvious consequence of considerations above. W

REMARK 4.1 We are not able to find a general regularity condition sufficient for the ex-
istence of {Y'(t), t > 0} analogous to (2.6), i.e. involving the part of intensity n, depending
only on 7 and w. It seems that any such condition would have to use the function L; as
well.

. REMARK 4.2 Clearly, when L; = const(= 1), then define L(u) = (Lz(u))'/*. When
L, = const, then L(u) = L*(uH*), or—equivalently—one can obtain L as a slowly varying
com.ponent of an asymptotic inverse of h(y) = y"/H(L,(y))~/(2H),

~ REMARK 4.3 When solving asymptotic equations for L one is reminded of finding norm-
ing constants in the central limit problem for distributions in a stable domain of attraction.
If the sum of a distribution tails vary regularly as 2®L;(z), then the norming constants are
of the form a, = n'/*L(n), where L satisfies the relation L;(n'/*L(n))/(L(n))* — 1, as
n — o0.

REMARK 4.4. For some simple slowly varying functions L; and L, it is easy to cal-
culate L directly. For example, when L;(u) = max(1,lnu), then L(u) can be taken as
(H max(In u, 1) Ly(u)) V=,
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