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ABSTRACT.  Besicovitch and his school discovered cases where the Hausdorff-Besicovitch di-
mension takes the “entropy-like” form — Z pjlog p;, where the p; are probabilitylike. The center
of the present paper is occupied by related expressions of the form — log pj, suitably normalized.
Being entropylike but nonaveraged, they will be called “ELNA codimensions.” Other new con-
cepts discussed here are those of “ELNA dimensional sequences,” and “ELNA Hoélder.” While all
the existing fractal dimensions involve sets or measures the ELNA dimensional sequences, ELNA
dimensions, and ELNA Holders yield a richer structure because they involve sequences of sets
and measures, as well as their limits, which can be nonempty or empty. “Survival” occurs when
the limit is nonempty; if so an ELNA dimension and ELNA Hélder are positive and difficult proofs
show that the ELNA dimension’s value is typically identical to those of a Hausdorff-Besicovitch
dimension and of other fractal dimensions. But the ELNA dimensional sequence brings impor-
tant additional information. For example, in the case of multifractals characterized by a Holder
spectrum f (@), it defines useful approximating functions f.(«). “Extinction” means that the limit
of the sequence is empty; the ELNA dimension is then negative, and it is shown that it fulfills a
surprising and novel role: It manages to give straightforward interpretations and a numerical
value to the so-far empty notion of “the degree of emptiness of an empty set.” One interpreta-
tion is geometric, in terms of the actual or formal embedding of the generating procedure in a
higher dimensional space. The second interpretation is statistical, in terms of a novel procedure
called “supersampling,” which is motivated by a novel “lateral” passage to the limit. The prac-
tical usefulness of negative-valued ELNA dimensions shows that the need may exist in physics for
characteristics that become lost in asymptotic results (often described as “fine-grained thermo-
dynamics” ) but are present in preasymptotic results ( “coarse-grained thermodynamics” ) and can
be usefully combined with lateral preasymptotics.
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Dedication

Several fractal concepts first arose in “pure’ mathematics and predate the concrete needs that
led to fractal geometry. But concrete needs continually raise new questions and require mathematical
tools that are either completely new or modifications of old tools. “ELNA dimension” is an example.
It first entered in the study of singular measures called multifractals and as a nameless expression in
extinction-or-survival theorems that I conjectured in 1968, 1972, and 1974 and that my old friend
Jean-Pierre Kahane, together with his then-student Jacques Peyriere, proved and generalized. This
is ample reason for surveying and expanding the new topic of negative ELNA dimensions on this
festive occasion. This survey will, I hope, stimulate more general considerations. A new theorem on
multifractals is followed by the conjecture that the same result holds under conditions weaker than
those I managed to tackle.

No scientist should neglect the advice of William of Ockham that “entities should not be
multiplied beyond necessity,” but both mathematics and physics meet necessity with great regularity
and in many guises. Thus, the study of random fractal sets or measures is enriched by introducing
yet another version of the already overloaded concept of dimension.

The need for negative dimensions first impressed itself upon me in several separate ways that
recall the introduction of v/—1. A known procedure was applied, either knowingly or unwittingly,
outside its domain of validity, and the outcome was a negative dimension, therefore first seemed
meaningless. But it eventually turned out to have a well-defined and novel role: It manages to give
a numerical value to the so-far empty notion of “the degree of emptiness of an empty set.”” This
confirms that, under the pressure of applications, fractal geometry continues to be in a state of growth
and not yet of conceptual consolidation.

In the space RE , Hausdorf—Besicovitch dimension also satisfies D < E. This second bound
also turned out to be excessively constraining in physics, and I showed that D > E can be used to
give a meaning and numerical value to the so-far empty notion of “the degree of overfilling of space
by an overfilling set.” The topic is discussed elsewhere.

Section 1 is devoted to motivations and the definitions of the ELNA dimension and the ELNA
Holder. Sections 2 and 3 study ELNA dimensions and Holders for birth-and-extinction fractals and
trema fractals, respectively. These are random sets obtained via birth-and-extinction processes or
the cutting out of “tremas.” Section 4 studies ELNA dimension in a nonfractal random context:
First as a formal device, then concretely. Section 5 outlines my 1974 theory of multifractal singular
measures [10, 11, 14]. In this approach, a sequence of functions f;(a) and a limit function f(e)
I called Holder spectrum are obtained from the probability limit theorems relative to large devia-
tions (“Cramer theory”). Those theorems introduce two quantities: f is now reinterpreted as an
ELNA dimension, and « is now reinterpreted as an ELNA Holder; f(«) enters as the limit of an
ELNA dimensional sequence. An astonishing number of separate fine geometric characteristics of
the graph of f(«) turn out to have a direct physical role. Section 6 moves from distribution proper-
ties to almost sure properties; it restates some old theorems, draws recent corollaries and states new
conjectures. A brief §7 sketches the relation of ELNA dimension to “thermodynamical” thinking
and that of ELNA dimensional sequences to a proposed “lateral” extension of thermodynamical
thinking.
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1. The Notions of Coarse-Graining, ELNA Dimension,
Coarse Holder, Fine Holder, and ELNA Holder

For Hausdorff and Besicovitch, fractal dimension concerned well-determined nonrandom sets,
the empty set being unique and having dimension 0. By contrast, ELNA dimensions concern recursive
constructive procedures (indexed by a positive integer or areal) that generate sequences of sets. ELNA
stands for “entropylike but nonaveraged.” An ELNA dimensional sequence is attached to an indexed
sequence of sets, and an ELNA dimension arises as the index — oo. To simplify notation, this paper
uses D without subscript to denote ELNA dimension.

I long resisted attempts to define a dimension for a random set, that is, for a population of sets,
but multifractals changed my mind. In addition, I now believe that the simplest fractal dimension
would have been more fully understood by nonmathematicians if it had not been attached to a set
but rather to a procedure that defines a set. For example, the dimension of the snowflake Koch curve
is D = log4/log3; viewed as a similarity dimension, D is a property of the set, but D is better
understood if viewed as a property of the construction procedure.

Holder and Lipschitz introduced an exponent that involves a lim inf and describes the local
behavior of nondifferentiable functions. It will be denoted as H or « and extends to describe the local
behavior of a measure. It will be called fine Holder. However, in addition to the usual limit expression,
we need a version that is analogous to an ELNA dimension. Although the words “entropylike and
nonaveraged” are not applicable, we shall speak of ELNA Holder. This notion does not apply to
one given measure but to an indexed sequence of measures. It can be negative. It first forced itself
upon me in the theory of multiplicative multifractals and then proved to be physically essential in
physics. In particular, many directly observable properties of multifractals are determined by a
Holder spectrum f () (discussed in §5), in which « is an ELNA Holder and f an ELNA dimension,
and the existence of points where both @ < 0 and f < 0 proves to be of mathematical interest and
direct physical importance.

1.1. Informal Statement of the Extinction-or-Survival Alternative

Let S denote a random set and s denote a nonrandom sample. The Hausdorff-Besicovitch
dimension Dyg(s) is a property of the sample set s, and the ELNA dimension D(S) will be defined in
§1.2 as a property of a random event, namely, as a renormalized logarithm of a probability. In other
words, D is a function of an underlying probability distribution linked to a generating procedure.

This being granted, Dyg(s) and D(S) are related by extinction-or-survival theorems whose
prototypes are found in earlier studies that this paper surveys and extends [10, 11, 7]. Those theorems
take either of two distinct forms.

(i) A surviving procedure is one that has a positive probability of generating a nonempty limit
set. The ELNA dimension of a surviving procedure is positive and can be viewed as another form
of fractal dimension, valid for all (or almost all) the sets generated by the procedure. A “survival”
theorem describes conditions from which it follows that, with positive probability, s is nonempty
and

Dug(s) = D(S), where D(S) > 0.
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(ii) An extinguishing procedure generates the empty set with probability one. An “extinction”
theorem describes conditions from which it follows that a.s., s is empty, hence Dyg(s) = 0; on the
other hand, D(S) < 0.

Thus, all extinguishing procedures can be viewed as equivalent from the viewpoint of Dyg.
However, the values of their ELNA dimensions D{(S) may differ, with the only constraint that they are
negative. When an extinction theorem holds, this paper proposes to show that the negative dimension
D(S) must not be discarded; it continues to be important and to have a clear geometric meaning and
physical significance. Indeed, it makes it possible to split the notion of “a set that is almost surely
empty” into a multitude of newly distinguished possibilities. Among those possibilities, the values
of the ELNA dimension provide a numerical meaning to the seemingly absurd notion of “degree of
emptiness of an empty set.”

1.2. Coarse-Graining of Sets and Measures

The self-explanatory term “coarse graining” is used in thermodynamics for a procedure that
mathematicians introduced independently in many forms. We deal with random sets S in the Eu-
clidean space R .

e Each sample set s is replaced by its intersection with a cube of side L, called an L-box, that
is subdivided into cubic e-boxes of side ¢.

e ¢-coarse-graining replaces s by the set s, made of the -boxes intersected by s.. An e-box
is called nonempty when it intersects s..

e Sis assumed to be stationary or translation invariant in the sense that the expression

Pr{a given e-box € S;} = Pr{a given e-box is nonempty}

is the same for all e-boxes in the large L-box.
e s-coarse-graining replaces a measure defined in RE by a measure defined for e-boxes in
RE.

1.3. ELNA Dimensional Sequences and ELNA Dimensions and Codimensions,
for which it is Possible that D < 0

We define the sequence of ELNA codimensions as
log Pr{a given &-box is nonempty}

C(e) = .
loge

Once again, this quantity is entropylike because it is of the form “—logarithm,” but it is not averaged.
However, it is normalized.
When the limit exists, we define the ELNA codimension as

C = lim C(¢).

£—0

The expression Pr{a given e-box is nonempty} can be arbitrarily small; therefore, the expres-
sions C (&) and C can be arbitrarily large, and the corresponding ELNA dimensions D(¢) = E—C(¢)
and D = E — C can be negative.
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1.4. Coarse Graining and the Coarse Holder Exponent; Fine Graining and the
Fine Holder Exponent H (Pointwise Dimension) That Satisfies H > 0

Given space “coarse-grained” into cubic boxes of side ¢ and a measure w, we define the coarse |
Holder exponent in a box as |

H— log(measure u in an £-box)
- log e '

When the box is chosen at random, H is a random variable. To follow an ingrained notation, the
value of H will not be denoted by 4, as probabilists would have preferred, but by a.
We define the fine-grained Holder exponent at a point P as

H — lim inf log(measure p in an g-box containing p)_
=0 loge

This last definition is classical, but the term fine must be attached to it for the sake of contrast
with coarse Holder. H is sometimes called a pointwise dimension. In a more perfect world, the
choice of words would not matter, but in our world, “dimensions of measures” are a continuing
source of confusion, and I opt to avoid this use.

1.4.1.  Effect of the Choice of Units and the Inequality H > 0.

In general, the units of ¢, i can be selected independently, and their choice does not affect the
value of the fine Holder. When a point carries an atom of positive measure, the fine Holder at that
point is = 0. When a measure is continuous at a point, its fine Holder is > 0. On the contrary, coarse
Holders depend on the units of € and y, but the dependence disappears in the interesting range where
both & and u are small.

1.5. The ELNA Holder, a Generalized Holder Exponent That Can Satisfy H < 0

Multifractals introduce inevitably an expression that is “like a Holder,” except that negative
values play an essential role. The main point is that, instead of a single measure 1, one must consider
a sequence of measures . that depend upon ¢ and may fail to converge to a nondegenerate limit
w. In the example of greatest interest, those measures a.s. converge to a limit that vanishes in every
interval. To achieve a nicer looking notation, we let ¢ and x depend on a parameter k and consider
for each point P the sequence of ratios

H log(measure p in an &,¢-box containing P)
kT log &; '

To denote this sequence and its timing as &, — 0, we keep the letters ELNA.

One can prove that the ELNA dimensions and Holders satisfy the inequality H < D.

Section 1 has been entirely formal. The sections that follow discuss how the ELNA dimensions
and Holders can be interpreted in concrete and measurable ways: Either geometrically viaembedding
or statistically via lateral supersampling.
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2. Birth-and-Extinction Fractal Sets; How a Negative-Valued
ELNA Dimension Is Interpreted Geometrically via
Embedding and Statistically via Lateral Supersampling

2.1. The Basic “Extinction or Survival”’ Alternative

The birth-and-extinction cascade on the interval [0, 1] is a recursive construction that generates
a randomized Cantor dust. The kth cascade stage begins with equal boxes of length ¢ = 27, Each
box is further subdivided into two dyadic halves, and each half can behave in one of two ways: It
“survives” with the probability p satisfying 0 < p < 1, or it is “extinguished” with the probability
1 — p. One defines a “birth-and-extinction process” [FGN, Chapter 23] by thinking of mother boxes
of length 2% as being replaced by N daughter boxes of length 27~ using the following rule: N = 0
with the probability (I — p)?, N = 1 with the probability 2p(1 — p), and N = 2 with the probability
p?. Therefore, EN = 2p, and §2.6 will show that the ELNA codimension and dimension defined
in §1.2. are

D=log, EN=1+4+log,p, and C=1-D = —log,p.

The ELNA dimension D = log, EN is a straightforward formal generalization of the basic similarity
dimension log, N.

The number of boxes after k generations is a random variable N;, whose behavior is classical.

When EN > 1, so that D > 0, the birth-and-extinction process has a positive probability of
generating a nonempty set called a birth-and-extinction fractal dust. For this set, D is the value of
the Hausdorff-Besicovitch dimension and also of every other useful form of fractal dimension.

When EN < 1, sothat D < 0, the “bloodline” extinguishes with probability one. In that case,
the “lifetime” of a bloodline is determined by the unique parameter p, hence also by any one-to-one
function of p. Let us now explain why the best choice is D.

2.2. Geometric Embedding of an Almost Surely Empty Set Can “Reveal”
for This Set a “Latent” Dimension D

The first of two strong reasons for drawing attention to log, EN as a negative dimension
follows from the fact that in this instance a negative dimension can be made positive by embedding.
That is, an “extinguished” birth-and-extinction fractal set can be viewed as a one-dimensional cut
through a “surviving” birth-and-extinction set embedded in a suitably larger space.

Indeed, one can start with the E-dimensional cube [0, 1]€ and apply the same birth-and-
extinction procedure to each of its 2¢ subcubes. The construction can also be carried out for
noninteger E as long as 2% is an integer. In this embedding space, EN£ = 2% p. Obviously, making
E sufficiently large will ensure 2 p > 1, hence D(E) > 0. Therefore, every extinguished birth-
and-extinction set on the line can be interpreted as a cut through a surviving birth-and-extinction set.
One can view a negative dimension as latent until embedding reveals it. Note also that C = —log, p
is the upper bound to the dimensions in which the birth-and-extinction construction of probability p
generates a set that is almost surely empty.
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2.3. Geometric Embedding is Eminently Physical, Whenever It Is
the Inverse of Intentional or Unavoeidable Dimension Reduction

Examples of dimension reduction include Poincaré sections in theoretical dynamics and vel-
ocity-measuring devices in the experimental study of turbulence, which yield a one-dimensional
record. In those cases, a negative dimension in a cut may well reflect a positive dimension in the full
set. Thus, I first used embedding in the study of turbulence, showing that “anomalies” present in a
one-dimensional cut through a flow may vanish if this cut is placed back in a full three-dimensional
turbulence.

The conclusion that a physical process is best understood by being investigated simultaneously
in spaces of every acceptable dimension was reached independently in several contexts. When
applying this idea to turbulence in the late 1960s and early 1970s, I was not aware of its wide and
successful use in statistical physics, especially in the context of renormalization groups.

Even in cases where embedding is an artificial mathematical device, it may remain very useful.

2.4. Use of “Supersampling” To Estimate a Latent D

In some cases, embedding is inconceivable, impractical, or unavoidably imperfect. For exam-
ple, the study of turbulence can use arrays of velocity-measuring devices; but the resulting measure-
ments are not spaced isotropically.

As a substitute, I suggested [15] an “effective embedding” by supersampling. The procedure
will be described in this section, then its principle and validity will be discussed in §2.5.

Given a birth-and-extinction fractal that eventually will extinguish, the kth stage prefractal
approximation is made up of 2% boxes, some extinguished and other surviving. An embedding in
RE would involve 2£% boxes, but would not be reachable. My idea’s first step was to think of this
unreachable embedding as a bundle of one-dimensional strips, each containing 2% boxes. The num-
ber of such strips would be 2(£~1* and they would, of course, be statistically dependent. My idea’s
second step was to replace those strips by a “supersample” made of 26~k statistically indepen-
dent samples of the original one-dimensional construction. To obtain a nonempty E-dimensional
embedding, one must choose £ — 1 > —D. The minimum number of independent samples, being
2%, increases with k and —D. Assuming 2% measurements per sample, the minimum number of
measurements is of the order of 2! =%,

2.4.1. Asymptotics Are Relevant Only in the Case D > 0.
When D > 0, one can estimate D from a single sample and the estimation precision increases
with k.

2.4.2, Pre-asymptotics Are Needed in the Case D < 0.

When D < 0, the asymptotic limit & — oo is empty. Taking this limit destroys all the
information about D and makes it impossible to estimate D. Thus, asymptotics do not matter for
D < 0. When one knows that one deals with a birth-and-extinction fractal, one improves the estimate
of the negative value of D by taking a large number of independent samples for k = 1. In more
general cases where D < 0, we must increase both k and the number of sample sequences. This fact
is sufficiently significant to be mentioned in this paper’s title and will be explored in §7.
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2.5. Supersampling Is Analogous in Spirit to a Mixture of Time and Ensemble
Averaging: It Is Ergodic When D > 0 and Nonergodic When D < 0

Time and ensemble averaging are familiar concepts in physics and mathematical ergodic theory.
Supersampling also involves an ensemble averaging, and parallelism with ergodic arguments is made
complete by viewing the parameter k as a counterpart of time. When D > 0, an increase in k
leads to an increasingly finely defined fractal; the ergodic theorem’s counterpart is the fact that
increasingly precise estimation of D can be achieved in either of two ways: by asymptotic “pseudo-
time” averaging or by ensemble averaging. When D < 0, to the contrary, pseudo-time averaging
destroys all information, while ensemble averaging does not. The contrast between ensemble and
pseudo-time averaging is necessary when nothing is known beyond D < 0 as, for example, in the
study of multifractals.

Needless to say, this form of “pseudo-ergodicity” begins as a hypothesis. Its validity, hence
the applicability of lateral methods, is not guaranteed, and must be proven separately in each new
case.

The simple but powerful idea behind lateral limits has already been used in earlier works
of mine and seems to be of wide generality. The underlying thinking begins with the known fact
that, when an expression has more than one parameter that can go to infinity, the limit usually
depends on the sequence of limits. Some limits may preserve information that is lost in others.
Many obvious parameters arising in concrete problems are like the parameter £ in a birth-and-
extinction cascade. When D < oo the k — oo limit is degenerate, and taking this limit destroys
valuable information. The basic insight was that one may be able to identify one or more physically
meaningful additional parameters that enter into limit theorems in which this valuable information
is preserved and enhanced.

My first use of a lateral limit occurred in 1969 [8]. The notion occurs extensively in my current
work on fractal sums of pulses (FSP) processes [20]. The FSP are self-affine, by design. Therefore,
they are unchanged by the customary passage to the limit that leads to convergence to the Wiener
or fractional Brownian motion. The reason why that passage to the limit is not useful for FSP’s is
not the same as in the present context: it is not that the usual passage to the limit destroys useful
information, but rather that it preserves too much information. However, the definition of a FSP also
includes a second parameter; it seems at first sight to be an innocuous density, but it turns out to lend
itself to a useful lateral passage to the limit that reveals useful latent information.

2.6. Proof That the Expression D = log; EN Is a Special Case
of the Expression Introduced in §1.3

When D > 1, the theory of birth-and-extinction processes tells us that, after £ > | stages of
construction, the number of nonempty boxes is either 0 or takes the form N, = ® EN¥, where ® is
a random variable dependent upon p. Hence,

Pr{a given g-box is nonempty} = N;2 ¥ = ®2*EN*.

Therefore,

log, ® + log, 27* + klog, EN

Cy =
log, ¢
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and it follows that
C=1-log, EN,

as asserted in §2.1.
When D < 1, the argument continues to apply, and the simplest proof is based on embedding.

2.7. Behavior of the Holder and the ELNA Holder in the Case
of Birth-and-Extinction Fractals

When D > 0, the cascade yields a natural way of assigning a measure on these sets. At each
cascade stage k, define u; by assigning the measure 2~ 2% to every surviving box. As k — oo, this
i has a weak limit o such that p ([0, 1]) # 0 with a positive probability. When ({0, 1]) # 0, the
1 of a given e-box is either 0 or of the form ®&”, where ® is the random variable introduced in §2.6.
Therefore, the coarse Holder is

log ® log
= =2 + D= £ + E +log, p.

H =
loge loge

The fine Holder satisfies H = D at points belonging to the limit dust and H = oo elsewhere.
Its values are graphed by a Holder spectrum function f(«) thatis defined only fore = Danda = o0
and satisfies f(D) = D and f(o0) = 1.

To extend the notion of Holder to H < 0, start with H = D > 0 and observe that f(«) has
the following property. When supersampling or a change in E (imbedding or intersection) preserves
H = D > 0, they translate the point where « = D and f(«) = D along the main bisector f = «.
It is tempting to consider that, when a decrease in E leads to D < 0, italsoleadsto H = D < 0.

The inequality H < 0 is paradoxical, but it does not imply that there is a fixed u such that the
measure in an e-box around a given point increases as ¢ — 0. In fact, H < 0 concerns a measure
that changes as ¢ — 0. There is an increase in the number of £-boxes that become empty and lead
to H = oo and an increase in the measure in those boxes that delay their becoming empty.

3. Trema Sets

The cascade used in §2 to generate a dust and a measure involves dyadic boxes. The method
is easy to study, both in mathematics and in physics, but is unnatural. As a substitute, [12, Chapters
31, 33 and 35] introduced sets generated by bounded sets in R”, called tremas. Space lacks to
describe them here, but a brief allusion must be included. From a generating set, called a template,
in which an origin is singled out, each trema is obtained by dilating or reducing in the ratio p, called
radius, and moving the origin to a point of coordinates x|, ..., xg. Each trema is parameterized by
an address point of coordinates P, xj, ..., xg. The number of trema address points in an elementary
box of sides dp, dx, ..., dxg is assumed to be CP~E~'dpdx,, ..., dxg.

If all the tremas satisfying ¢ < p < | are cut out of R, one is left with a “remainder set”
S(&). The remainder sets S(¢) are indexed by ¢; if ¢ > &”, s(&”). The set S(0) = lim,_. S(¢) may




418 B. B. Mandelbrot

be a.s. empty or nonempty with a positive probability for a prescribed point P; one finds that

~

Pr{P € S(g)} = €.

Therefore, the ELNA codimensional sequence of S(¢) reduces to C, and the ELNA codimension of
S(0)is C.
When C < E so that D > 0, it can be shown that (a) S(0) is nonempty with a positive
probability and that (b) if S(0) is nonempty, it has a.s. D as its Hausdorff—Besicovitch dimension.
When C > E sothat D < 0, S(0) is a.s. empty and D measures its degree of emptiness. It
is a latent quality that can be revealed by embedding into a space of dimension E’ > C.

4. Intersections of Sets, the Addition Rule for ELNA Codimensions

This section describes a different path that helps understand the nature of ELNA dimension.
The context is that of the intersection of two randomly placed sets that need not be fractal.

Minkowski defined a set’s e-neighborhoods and showed that in R? a surface is best understood
as the limit of the “coarse-grained” approximations represented by its ¢-neighborhoods. We shall
continue beyond the point where Minkowski stopped and argue that certain constructions that define
empty limit sets can be characterized by “latent” e-neighborhoods.

4.1. The Dimension of Two Sets’ Intersection: The Generic Rule
and the Major Exception to Its Validity

Take two sets S; and S, (either Euclidean or fractal) in RE. Denote their co-dimensions by
E —dim(Sy) and E — dim(S;). Define § = S N $; and define latent dim(S) as

E —latentdim (S) = E — dim(S)) + E — dim(S;,).

4.1.1.  Generic Rule.
When latent dim (S) > 0, it follows that dim(S§) = latent dim (§).

4.1.2. Major Exception to the General Rule.
When latent dim (S) < 0, it follows that dim(S) = 0.

4.2. Examples: Seemingly Thoughtless Algebra Yields an Intuitive
Notion of “Degree of Emptiness”

We begin with seemingly thoughtless algebra in R?. The intersections of (i) two points, (ii)
a point and a line, and (iii) two lines are “generically” empty, but an “intuition” tells us that the
intersection of two points should be viewed as even “emptier” than the intersection of a point and
a line, or the intersection of two lines. One would wish to replace this intuition by a number. The
Hausdorff-Besicovitch dimension fails at this task because it vanishes for the intersections (i), (ii)
and (iii).
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On the other hand, let codimensions be added, disregarding the major exception. This char-
acterizes our three intersections, respectively, by latent dimensions equal to —3, —2, and —1. If
this addition of codimensions could be given a meaning, it would yield a very useful measure of the’
relationship between nonintersecting sets.

4.3. Steps Needed To Justify the Addition of Codimensions
When It Seems To Be Thoughtless

Acknowledge that one can only observe a bounded “window” of space, a cube of side L,
containing small blobs, thin sticks, and thin shells and, more generally, containing Minkowski &-
neighborhoods of sets, which are sequences of sets that depend on a parameter ¢. The study of such
sequences may be richer than the study limited to their & — 0 limits. When D > 0, the two studies
are equivalent. When D < 0, the limit for ¢ — 0 is degenerate, but if the sets are randomly placed,
the preasymptotics for small & > O carry useful information.

Randomness is central to allowing this generalized dimension to become negative. D does
not describe a specific set, but describes and classifies a generic reason why a limit set happens to
be empty.

4.4. Negative Box ELNA Dimension: Example From Euclidean Geometry

To cover a Euclidean or fractal set of box dimension Dy requires N(b) ~ bP boxes of side
r = b~'. The familiar box dimension Dg simply measures the rate of increase of N(b) with b. A
generalized negative dimension might describe the rate of decrease of “some quantity” like N (b).
The number of boxes, being an integer, could not decrease. To avoid the fact that N is an integer,
we must refer to a random ensemble or population of constructions. Let us examine EN.

The algebra is simplest for the intersection of a point and a line in the plane, to show that its
box ELNA dimension is equal to — 1, start with a square window of side L that includes a pointlike
blob of side 1/b and a linelike strip of width 1/b. When the strip intersects the blob, N = I
otherwise, N = 0. Intersection occurs when the distance between the point and the line is < b,
which happens with probability ~ b/L. Thus, EN ~ L/b, and for large L/b we obtain

log(1/b
lim Dg = M - _1.
L/h—oc log b

4.5. Negative e-Neighborhood (Sausage) Dimension;
An Example From Euclidean Geometry

The familiar sausage of S is the set of points that lie within a distance £ of a point in S. The
sausage of the union of §; and S, is therefore the union of the sausages-of S| and $,, But what about
the sausage of the intersection S| N S,? Where S; N S, is nonempty, the intersection of the sausages
of S; and S, and the sausage of the intersection scale with the same exponent as € — 0. When the
sets S and S, fail to intersect, only the intersection of the sausages continues to be defined. In the
present example of a point and a line in the plane, the area of the intersection of sausages is ~ &2
with a probability ~ /L and otherwise is 0. Hence, the expected area of the intersection is ~ e3/L.
The exponent in this expression is a generalized sausage codimension. Its value is 3, which confirms
D=-1
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5. Multiplicative Multifractal Measures: Derivation

of the Holder Spectrum f(«) via Large Deviations
and the ELNA Dimension and Holder

Sections 5.1 and 5.2 survey two elementary cases and interpret them in ELNA dimensional
terms. The remaining subsections study random multiplicative multifractals using Cramér renor-
malization. The Holder spectrum f () is obtained not as a property of the limit measure but as a
property of a multifractal-generating process.

5.1. Binomial Multifractals

The binomial measures depend upon areal parameter my, called a multiplier or amass satisfying
0 < my < 1. The “generating step” redistributes mass between the halves of a dyadic interval, with
the relative proportions of my to the left and m; = 1 — mq to the right. Thus, the first stage yields
the mass my in [0, 3] and the mass m, in [4.1). After k stages, let gy and ¢; denote the relative
frequencies of 0’s and 1’s in the binary development of x = 0.8, 82, ..., B written in the counting
base b = 2. The binomial measure attributes to the dyadic interval [dx] = [x, x +27%] a mass equal

to u(dx) = mg“)"mlf“". Hence, the coarse Holder exponent of this interval is

w ( ) logdu(dx) o o
= (g, == - _ _
Yo, ¢1 log dx Qo l0g, my — ¢ 10g, m;

The number of intervals leading to ¢y and ¢, is N (k, @o, ¢1) = k!/(kgy)!(kg1)! Hence, in an
informal sense that will be specified momentarily, the set where this « is observed can be said to
have a dimension equal to

log N(k, go. ¢1) _ log[k!/(kgo)!(ke1)']
log(dx) - log(dt)

8k, wo, 1) = —

The limit k — oo defines
8(po, 1) = kllrr;cé(k, @0, 1) = —¢o log, go — @1 log, @1

Eliminating ¢y and ¢; = 1 — ¢ between « and §, we obtain a function f(«). Its graph is a translated
and rescaled version of the familiar bell-shaped graph of the entropy function: We shall say that it is
“N-shaped.” It satisfies the following inequalities: f(«) < a, with equality for some «;; f(e) < 1,
with equality for some a;; f(«) > 0in a bounded interval 0 < apiy = —10g, My < & < Omax =
—log, my < oo, with equality at the interval’s endpoints. Outside of this interval, f(a) is not
defined.

The logical standing of the informal dimension f () comes out if the problem is restated in
terms of probability densities. Even for nonrandom measures a random variable appears when a
dyadic box of length 27* is picked at random among the 2* boxes. Then the coarse Holder exponent
becomes a random variable H. The probability of hitting H = «, to be denoted by Pr{H = «],
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equals 274N (k. @y. @) and satisties

_log Pr{H =} log2 " Nk, ¢u. ¢1)
B log dx B log dx '

Ck. o, @1)

The limit C{a) = limy_.~ C(k. . @) is a ELNA codimension in the sum of §1.3. It satisfies
Cla) =1— f(a).

5.2. Multinomial Multifractal Measures and the Derivation for the Legendre
Multifractal Formalism Using Lagrange Multipliers

In the base » > 2. a multinomial measure is defined by b multipliers mg (0 < 8 < b — 1),
which add to 1. Denote by ¢ the point whose coordinates are the frequencies ¢4 of the digits 8 in
the base-b development 0.7 5. .. .. . Every b-adic interval characterized by $ yields

pidey = nm:j .

The coarse Holder and the informal dimension § are given by

o= — Z pplogymy  and 3 = ~ Z s log, ¢

5.2.1. The Domain of All Possible Points (a.§). Lagrange Multipliers and Legendre
Relations of Gibbs Thermodynamics

Ask — oo, the ®@’s that yield a given « define a portion of a hyperplane, on which the function
8 varies continuously. Therefore. the possible values of § for a given « cover an interval. Those §’s
are dominated by the highest among them. which is the solution of the folllowing problem:

maximize — Z oplog, @y given — Z(pﬁ log,my =, and Z pp = 1.

The classical method of Lagrange multipliers introduces a multiplier ¢, with —o¢ < ¢ < 00, and
yields

¢ b
bl log,my My
Y

= = 7
2 belog my 3 m

The roles that inverse temperature 1/A7T". “partition function.” and “free energy™ play in thermody-
namics are now played by ¢. > m. and tiq) = —log, 3" m . respectively.
In terms of 7 (g}, the Lagrange multipliers determine ¢ and f («) from « by

0 ¢
o =- E ¢y log, my = —— log, my
dq
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and

. vy, g
- d_tqlogymy —log, 3 miymy

7
3 ny,

maxd = flu) =

Hence, the Legendre and inverse Legendre relations

AT (y)

o =
ady

and

fla) = min(go — 7).
g

5.2.2.  The Moments of i and the function t(q). The partition function and its expectation.

When a box is selected at random. the multiplier is a random variable M that takes the value
my with the probability 1/b. Its gth moment is EM, = Z(l/b)m;’;. The “cumulant generating
function™ is log, EMY = —1 — t(¢). In terms of 7(¢), one finds that

E“(/(dr) — ['EMt/I/\ — H)—l ’”L/ IA — [b—l—r(t/)]k —_ (({f)l+rl‘/,-
f

To define the partition function. one proceeds in formal analogy with thermodynamics. The
domain of definition of ¢ 1s subdivided into boxes of side dx. and the ¢, (dx) are the measures
contained in those boxes. Then. the partition function is the expression

Zlg.dxr = Z//f'u/,\‘b.

It satisties

Ex(q.dt) = (dD)~ " Epd(dry = (d)T'¢"

As we see, the vocabulary of thermodynamics cannot be avoided but must be taken with
extraordinary caution. Even when it is suggestive, it may be misleading because the moments of
the limits of multifractal measures can differ from the limits of the moments. As a consequence.
heuristic thermodynamical arguments are often either incorrect or valid under restricted conditions.

5.3. Random Multiplicative Measures: Distinction Between /i and

Next to be examined is the generalized and randomized form of the multinomial measure that
was constructed and investigated in [10, 11, 7]. That construction’s first stage takes up the base-b
box of length & = b~ starting at @ = 0.8000. ..., with0 < 8 < b — 1, and assigns to it a random
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multiplier M (B). The same process is repeated recursively. Thus, the first k stages of multiplication
assign to the b’ -adic box of length b™* starting at x = 0.8, s, ..., Bi the mass

r(dx) = MBYM B, Bo), ..., MBy, ..., B = [ [ M.

The successive random multipliers M for given x are independent and identically distributed.
To fit the image of “mass,” it is natural to assume some form of conservation.

5.3.1.  The Conservative Variant of the Multiplicative Construction in [ ].

Here, each cascade stage shuffles mass around while preserving it. Thus, the point of coor-
dinates M(f) is a random point in the portion of b-dimensional space defined by M(8) > 0 and
> M(B) = 1. These inequalities imply EM = b~'. They also imply M < 1, from which it follows
that (dx) < 1, from which it follows that a,,;, > 0. In that case, the mass u;(dx) in a b-adic
box of length b~ reduces to iz (dx). It will follow that the complications relative to ELNA Holder
exponents do not occur, but those relative to ELNA dimensions may or may not occur.

5.3.2.  Conservation on the Average and the Canonical Variant of the Multiplicative Con-
struction in [ |; The Random Variable 2.

A more general construction allows mass to be created or extinguished, as long as it is conserved
on the average, meaning that EM = b~!, but M is not otherwise constrained, and may exceed 1. The
simplest subcase, called canonical, assumes that the M (8) are statistically independent. It follows
that the mass (14 (dx) is a product of two independent terms.

The low-frequency first k stages yield a mass equal to the above fi;. A significant consequence
is that each step for which M > 1 creates mass. As a result, it may happen that £, > I, that is,
&mm < 0.

But this is not all: The “high-frequency” stages beyond the kth contribute a random multiplier
Q2 identical in distribution to o[0, 1]. Thus, we can write

wi(dx) = i (dx)S2.

In conservative cascades, 2 = 1. In canonical cascades with «; < 0, §6.1 will show that
€ = 0 a.s.. In canonical cascades with &) > 0, f(«) does not fully determine the probability
distribution of 2 but some features of f(«) deeply affect the moments EQ2¢, as will be seen in §6.3.

All these complicated distinctions are important, but Durrett and Liggett [4] have shown that
the rules of dependence between the multipliers do not change the extinction or survival criterion, to
be introduced shortly. The fact that they do not affect the multifractal formalism may even be viewed
as demonstrating that measures that are treated by this formalism as being identical may otherwise
be clearly different.

5.4. Random Multiplicative Measures: Distinction Between the ELNA Holder
Exponent H and the Holder Exponent H; Examples of Functions f(«) and
of Diverse Anomalies

Once again, a fine distinction is needed. We can define an ELNA Holder sequence H « for the
sequence of low-frequency measures fi;, and a Holder for the full measure p. Writing —log, M =V,
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our box of base b yields the ELNA Holder sequence

L logjudx) 1 _ =2
Hk_m_k[ log, M (1) —log, M(B1. ) ---1 =

Thus, Hy is simply the average of k independent identically distributed random variables of the form
V. The ELNA Hoélder is H = limy_, o, H.

If p(v) is the probability density of V and py(v) the probability density of > V, the probability
density of E{k = (1/k)>_ V is kpy (ko). This last density serves to define the ELNA dimensional
sequence, and the ELNA dimension f(«) is then obtained by taking a limit for k — o0. §5.5 will
discuss the form of f(«) in a fairly general context. As preparation, it is useful to mention a few
easy-to-obtain functions f(«) that exemplify the “nonanomalous case” and two basic “anomalies.”

5.4.1.  The Very Special Case Corresponding to Birth-or-Extinction Dusts
The function f defined in §2.5 is a very special case of the f(«) we are now discussing. In
that case, f(«) is only defined for @ = D or @ = oo and satisfies f(D) = D and f(oc0) = 1.

5.4.2. The Nonanomalous Case

It corresponds to f > 0 and oy, > 0, hence, «; > 0. These conditions are satisfied by the
binomial multifractal of §5.1 or the multinomial multifractal of §5.2. At one time, the opinion has
spread that this is the “normal” form of f(«) and that all other forms, hence the inequalities oy, < 0
and fuin < 0, are “anomalous.” But they are not, as shown by the following two explicit examples.

5.4.3. An Example of the fin < 0 Anomaly, Combined with a Nonanomalous o} > 0
Anexampleis described in [15]. When M is uniformly distributed over [0, 1], exact elementary
calculations yield

T(q) =log(¢g + 1) — 1,
and, denoting log, ¢ by A,
fl@)=x+1+log, (/L) —a.

In this example, finin = —00 and o, = 0.

5.4.4. An Example of the ami, < 0 Anomaly, Combined, or Not, With the o, < 0 Anomaly

Negative a’s between 0 and amin < 0 must be ELNA Holders; they cannot be fine Holder
exponents. Since f(a) < o, the oy, < 0 anomaly implies the fi,in < 0 anomaly, but goes farther.
In an example described in [18], V is Gaussian, hence w is lognormally distributed. Then the
expression of f(«) in terms of «y is

(@ — ag)?

JO =1 Y=’

the graph of f(w) is a parabola, fini, = —00, &min = —00, and o] = —ap + 2.
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In addition to the o, < 0 anomaly, and the fyi, < 0 anomaly, this measure may examplify
the oy > 0 anomaly. It occurs when the graph of f(«) is a very flat parabola with 1 < &y < 2, i.e.,
M is a very long-tailed lognormal.

5.5. Random Multiplicative Measures: The ELNA Codimensions, the Functions
fx (@) and the Holder Spectrum f (&) as the Limit for £k — oo of the

Distribution of the ELNA Hélder H

Section 6.4 showed H; to be average of random variables. In searching for its asymptotic
distribution, standard limit theorems of probability are shown to be of limited usefulness. One needs
the Cramer theorem, which yields a population function f () relative to the multiplier M. Given
that convergence of random variables can be defined in different ways, one requires a multiplicity of
different limit theorems, each true on its own terms.

The law of large numbers tells us that if EH < oo, then H converges to E H, which implies
that C () has its maximum for ¢y = EH.

The central limit theorem tells us that as long as EH? < oo, the graph of C(«) is parabolic in
the immediate neighborhood of oy = E H.

In the multifractal context, these results give too little weight to «’s far from «. In order to
determine C (), one needs a very different limit.

Harald Cramer’s “large deviations theorem” As k — 00,

1
— klim 3 log, (probability density of «) exists and defines a function C ().
—>

The Cramer theory shows that the functions f(«) = | — C(«) and t(g) = —1 — log, EMY
are linked by the Legendre and inverse Legendre transforms. The best proof of Cramer’s result, in
Daniels [ ], uses the steepest descent argument; it has been rediscovered repeatedly by physicists
interested in multifractals. I first used [1] and [2] where the Cramér theory had barely started being
developed, and was rather obscure among physicists and even among mathematicians.

5.5.1.  Comment on the Fact That This Approach Defines t(q) via the Expectation EMY,
rather than through the partition function

Readers acquainted with the physicists’ writings on multifractals (Section 5.6.3) are accus-
tomed to seeing 7(¢) defined via a “partition function,” which is a sample moment. In the simplest
cases, the two definitions are equivalent. But the cases that involve negative dimensions are precisely
those for which the two definitions differ, as we shall see.

5.6. Three Variants of the Holder Spectrum f () of a Random Multifractal Measure
and Three Views of the Legendre Formalism

The “Holder spectrum” function f(«) is the “signature” of a multifractal measure. Different
authors obtain it by three distinct arguments.

In two widely known approaches to multifractality (§§5.6.2 and 5.6.3), « is a classical Holder
exponent, hence « > 0, and f is a Hausdorff-Besicovitch dimension, hence f > 0. But in my
original approach of 1974, now being restated more carefully and forcefully, §5.4 introduces « as
the value of ELNA Holder H, and allows o < 0. Moreover, f is an ELNA dimension that satisfies
f > 0 forsome ¢ > 0and f < O for other @ (which may be of either sign). One can write
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fl@) = fH(a) + f(a), where f* = fif f > 0and f* = 0 if f < 0O; this implies that
f-=fif f <Oand f~ = 0if f < 0. Using this notation, we can characterize the approach to
multifractals via the Hausdorff-Besicovitch dimension as not yielding the whole function f(a) but
only its positive part £ ().

5.6.1. The Approach to f(«) via Probabilities, ELNA Holders, and ELNA
Dimensions; the Legendre Formalism Obtained By Applying the Cramer Theory of
Large Deviations to the Coarse-Grained Measures

This approach obtains max f(«) — f(«) as the limit of a certain probability density that has
been plotted in properly rescaled logarithmic coordinates. This involves the following steps. (i)
Coarse-grain p by averaging it over boxes of side ¢. (ii) Form the coarse ELNA Holder «. (iii) Form
the probability density p of «. (iv) Plot log p/log ¢ as a function of . One sees that the variable u
and then its probability density are replaced by properly rescaled logarithms. In this approach, both
positive and negative «’s and f’s are needed. The positive f’s serve to characterize the variability
of the distribution of the fine-grained u on its support. The negative f’s serve to characterize the
randomness in the distribution of coarse-grained .

5.6.2. The Approach Through the Hausdorff-Besicovitch Dimension

An alternative definition of f(«) involves almost-sure properties of a fine-grained measure
defined for continuous variables. Given o > 0, denote by S, the random Holder isoset, defined as
made of the points x where the classical Holder exponent satisfies H = «. As a corollary of the
Mandelbrot—Kahane—Peyriere theorem, one can prove that the Hausdorff-Besicovitch dimension
Dyg (s, ) takes the same value for almost all the sample measures of u and that Dyp(sy) = fT ().
f*(a), introduced in this fashion, but not f («) itself, can be called “spectrum of singularities.”

The properties ruled by f*(a) are not only the almost-sure properties of the fine-grained u
but also the “typical” coarse-grained properties. Therefore, f+(a) says nothing about the variability
of coarse-grained samples.

5.6.3. The Partition Function Heuristic

This is the approach taken in [4] and [5]. For nonrandom measures with f(a) = fT(a), the
partition function heuristic can be made rigorous and yields f(«), but for the random measures in
which we are interested, this heuristic is helpless, and a crucial application is thoroughly misleading.

5.7. Properties of the Holder Spectrum f () Obtained as an ELNA Dimension

The ELNA dimensional sequence concerns ELNA “Holder tsosets.” These are sets defined by
conditions of the form “H = a,” where the domain of the parameter « is an interval [nyin, @max]- In
all cases, amax > 0. The possibility that ¢y, = 0o is not discussed in this paper but is not excluded;
it characterizes the Minkowski multifractal [19]. As for an,, one can have either oy, > 0, or
Umin < 0, not excluding o, = —o0, a limit that will be encountered in this paper.

The approach involves a sequence of ELNA dimensional functions to be denoted by f: ().
Their limit f (&) is cap convex (like —x2), but there are cases (notably the Minkowski multifractal)
for which the convexity of the f, () changes from cap to cup (like x?) for some critical value of «.

The graph of f(«) is bounded by straight lines, three of which were mentioned in 5.1 in a
special case.

A. f(w) < E, where E is the dimension of the set that supports the measure; f(«) = E for
o = g, with ¢g > 0 in all cases.
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B. f(a) < a. This shows that | is the slope of a tangent drawn from the origin to the graph
of f(a). The equality f(a) = « holds for & = «), with either @; > 0, ora; < 0.

C. When amin < 0, one has f(a) < a Qe where | < Qi < 00. This Q¢ is the slope of
the tangent of slope > 1 that can in certain cases be drawn from the origin to the graph of f(«).

Actually, ain < 0 introduces a mathematical complication that will turn out to be physically
important: One must distinguish between the Holder spectrum f(«) and a related but different
function j(oz) For o > aui, f(a) = f(a) but for o < o, f(a) = ageq While f(a) < Ofcrit-
One deals with approximating measures fi; that tend to a limit yx, while their ELNA dimensional
sequence f A((x) tends to a limit f (o) that differs from the f(e) function of . The critical Q. and
the inequality f(a) < f(«) both involve negative ELNA dimensions and ELNA Holders. It may
therefore come as a surprise that the value of g, is of directly observable physical significance.

D. Finally, a basic alternative is conveniently expressed by f(a) = fuin, Where Jmin =
inf f () can be either > 0 or < 0. For certain purposes, it is necessary to distinguish between
inf{ f(a); ¢ < o} and inf{ f(a); @ > ap}.

When f(a) is introduced as an ELNA dimension, it is possible to have «; < 0, foin < 0;
omin < 0, and each of these inequalities has interesting consequences.

Finer results in the case where fpin < 0 hinge upon further fine geometric properties of the
graph of f(«). Denote by [ef ,at ] the interval where f(a) > 0. Write gy max = f' (et ) and

min’ max min
Ga.min = f(e},). The interval [y mins ga.max] Will be investigated in §6.4. It will be shown in some
cases (and conjectured in others) to be the interval of values of ¢ for which the measure u does not
extinguish.

Denote by /oo, min and eeo max the solutions of the equation

and write
f/(aoc.min) = {>c.max and f,(aoc.max) = {oc.min-

The interval [¢oo.min Goo.max] Will be seen in §6.5 to be the interval of values of ¢ for which the
partition function x (g, &) has finite moments of all orders and, therefore, can be estimated reliably.

When ¢min, = —00, one can show that deo min = ®o; When &max = 00, one has doe max = -
Denote by Qcit(q) the largest value of Q such that Ex?%(g,&) < oo. As g varies from ¢oo max t0
§d.max OF fTOM Goo min tO Gy min, the value of Qii(g) will be shown to decrease fromooto 1.

5.8. The Measure 9 Constructed Using the Multiplier M9 = M?/bEM?,
and the Graph of Its Holder Spectrum f{a, q)

When the ELNA Holder corresponding to M is H, the ELNA Holder corresponding to M@ is
HY = gH —log[bEMY(dx)] = gH — t(q).

Therefore,

flaq) = f (—“ +q”‘”) .

To each ¢ and p corresponds a characteristic exponent «,’ that plays for '@ the role that
o, plays for p. For the purposes of §6, it is important to compare the main characteristics of f («) and

(q)
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f(a, g). The value of fin is unchanged; therefore, a (non)anomalous f'(a) yields a (non)anomalous
f(oz, q) forall g. Asto amin, its replacement atymin (p) satisfies pin(¢) = gotmin — 7(g) forg > 1 and
Unin(q) = gama — T(g) for g < 1. Both expressions can be shown to be decreasing functions of
Ig|. Suppose apmin > 0 with f, nin < 0, and make g increase, starting with p = 1. First, amin(¢) and
later oy (q) will change from positive to negative. Suppose oyin < 0, which implies f, min < 0 with
ai") > 0; then, as ¢ increases from 1, a(,‘” eventually changes from positive to negative. Sections 6.1
and 6.2 were largely arestatement in terms of f () of well-known results from [10, 11,7]. The present
§ moves on to the partition function X(g, d) defined in §5.2.2. Forq = 1, X(1,dx) = Y_ u;(dx),
that is X(1, dx) = €, where 2 is the random variable introduced in §5.3. For g # 1, all we know
until now was a result derived in §5.2.2, that EX(q,dx) = (dt)"'?. In the literature of physics
[4, 5], X(g, dx) is casually assumed to behave like EX(q, dx). Furthermore, this literature bases
the definition of T(g), not on the behavior of an observable expectation, but of an observable sample
value. This § will point out that the validity of this casual assumption depends on the sign of ai").

The case a}") > 0. When fuin > 0, this inequality holds automatically. When f;, < O, this
inequality only holds. When a}" ' > 0, we shall see that the sample Chi and its expectation follow
the same scaling rule.

The case ai") < 0. This inequality only occurs when fi,i, < 0 and ¢ is outside of the interval
that corresponds to as satisfying f(«) > 0. When a(,") < 0, we shall see that the sample X and its
expectation follow distinct scaling rules.

The argument presented in this § is, unfortunately, limited to the conservative multiplica-
tive multifractals, for which @ satisfies 2 = 1. In that case, the normalized parition function
X(q, dx)(dx)" "9 is simply the measure of [0, 1] when the multiplier M is replaced by M. As a
result, the study of X (g, dx)(dx)~" that follows momentarily, reduces to applying the results of
§86.1 t0 6.3 to the measure p?’.

The measure is neither conservative (§5.3.1), nor canonical (§5.3.2). However, [3] showed that
the extinction-or-survival criterion continues unchanged. It is based on the sign ofa(,"), and involves
a limit variable Q¥ that satisfies EQ“’ = 1. It is conjectured that that same results hold where
is nondegenerate; it is hoped that a reader will soon prove this conjecture.

6. Limit Properties of Sample Measures and of Sample
Partition Functions: The Extinction-or-Survival Criterion
and the Critical Exponents Qii(q)

Thus far we examined weak properties of f(«), the probability distribution of the measure
produced by a multiplicative process for high but finite values of k. A harder task concerns strong
or almost-sure properties, that is, the role f(«) plays in characterizing the limit measure itself.

Once again, the most basic features of a function f(«) are the signs of &y, fmin, and ¢pin-
The shape of f () allows for three alternatives already considered in the literature; together, they
define four cases, which will be sketched in §§6.1 to 6.3. There §6.4 and 6.5 will describe finer new
alternatives.

6.1. Alternatives Based on the Sign of ¢; : The Extinction or Survival Criterion

The case of survival. When «; > 0, the measure [i(.) survives with positive probability and
converges to a limit u. This case includes the birth-or-extinction dusts for which D > 0 means that
f = 0. But this case is compatible with oy, < 0 and fii, < 0.
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The case of extinction. When a; < 0, the measure is almost-surely extinguished. Necessary
conditions for @) < O are o, < 0 and fini, < 0; for example, this case includes the birth-or-
extinction dusts for which D < 0. The fact that f(«) includes a portion where f(«) > 0 does not
prevent extinction. An extinguished measure can be revived by either embedding or supersampling
with £ — | > —q;.

How does extinction manifest itself concretely? In the birth-and-extinction fractals of §2,
extinction means that, a.s., the measure of every interval vanishes after a variable but a.s. finite
number of stages. For multifractals that satisfy Pr{M > 0} = 1, the measure of an interval tends to
0 but remains positive for all finite k. Probabilists always hope that quantities that tend to O or oo can
be renormalized to tend to a limit that is > 0 and < oco. But in the present case this is impossible.

6.2. Alternative Based on the Sign of f,in, Assuming Survival

The case of survival with fmin = 0. The best known example is that of N-shaped f(«), which
is cap convex over a bounded interval 0 < opin < @ < @max < 00. When fi, > 0, which implies
Omin > 0, f() is almost surely the Hausdorff-Besicovitch dimension Dyp of the Holder isoset of
points where the measure p has a fine Holder equal to «. Furthermore, the whole function f(«) can
also be obtained by the Hausdorff path or the partition function path. The measure may be random,
but, if so, its randomness must be viewed as “irrelevant.”

The case of survival with fuin < 0. Then f(a) = ft(a) + f («), with f~(a) # 0 for
some «. The function f*(a) can be interpreted as an a.s. Hausdorff-Besicovitch dimension. The
function f~ () can be shown to describe the rules of randomness. It will be seen in §6.4 that f~ («)
disappears asymptotically as one moves from coarse to fine graining; but it can be interpreted by
embedding or supersampling.

6.3. Alternative Based on the Sign of apyi,, when a1 > () : the Moments of Q2

When amin < 0, part of the function f(«) corresponds to extraordinarily unlikely values of
(. They could only be observed with the help of massive supersampling, and one would expect
the value of o, to be of small importance. To show that this expectation would be ill-advised, it
suffices to consider the distribution of the total measure in the interval [0, 1], which §5.3.2 denotes
by Q. By itself, f () fails to determine the distribution of €2, but the sign of o, suffices to describe
an important aspect of its tail behavior.

The case of survival with fuin < 0 but o, > 0. In this case, EQY < oo for all g.

The case of survival with funin < 0 and ay, < 0. The inequality EQ? < oo holds if and only
if g < Qcric(1), where the quantity Q. (1) is obtained as follows: When ap,, < 0, two tangents to
the graph of f (&) go through the origin: one is of slope 1, and the other is of slope Qi (1). This is
very much in the spirit of supersampling.

6.4. In the Case of Survival with fi,in < 0, the Behavior of the Partition Function
x (g, €) Involves a Finer Subdivision Defined Separately for Each ¢

The case a}") > 0. The extinction-or-survival criterion tells us that the sequence of measures
,u}f’)(dx) converges to a nondegenerate random limit, which is the variable Q% corresponding to
the multiplier M9, Hence, x (g, dx) = b*"“DQ@ It follows that the physicists’ heuristic is on the
right track in this case. The partition function Y x (g, dx) is equal to the population expectation
b*E 4 (dx), multiplied by the random factor Q4’, which satisfies EQ“ = 1. That is, the sam-
ple value and the expectation follow the same analytic scaling rule. It seems safe to conjecture (but
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I have not attempted a full proof) that, as d — 0, the function t(g) follows the same analytic scaling
rule estimated from the sample partition function, will converge a.s. to the function t(g) defined in
§5.2.2. The issue of convergence is taken up again in §6.5.

The case ai" ' < 0. Now, the extinction-or-survival criterion tells us that the sample sum of

,uf:’) converges a.s. to zero. The unexpected consequence is that the geometric scaling property of (L
fails to imply that the sample sum x(q, dx) is analytically scaling.

However, there is more to say. An elementary but lengthy argument (for which we have no
space) shows that (i) for ¢ < g, the sample sum is asymptotically scaling for dx — 0, with the
scaling exponent T (¢) = g ", , while (ii) forg > ¢,5 ., the asymptotic scaling exponentis 7(q) = ¢
ot . FOr gmin < ¢ < gma, let us define (g) as 7(q) = t(q). The Legendre transform of this
function 7 (g ) happens to be simply the function f, («). The function f_, plays no role whatsoever
in the study of x. However, this T(g) is only defined asymptotically for dx — 0. This may explain
the anecdotal reports that values f(a) < 0 have been obtained from the partition function.... and
could not be accounted for.

We have carried out extensive computer simulations to test this prediction; the results are very
striking. The reader is advised to test them again, for example, using the measures described in

[15, 16].

6.5. Addendum: Weak Limit Theorems Rulings the Estimation of 7(g) from
Samples

It is convenient to misplace here some comments on a topic that concerns a weak, rather
than a strong, limit theorem. Since EQYW = 1, it was conjectured in Section 6.4 that the 7(g)
estimated from a sample partition function converges a.s. to the 7(g) defined in §5.2.2. The speed
of convergence surely depends on the moments of (', more precisely, on the order of the highest
finite moment, which we denote by Q.,i;(¢g). The sample fluctuations of the estimate 7(g) are
lowest where Q.;;(g) = oo. The domain of attraction of the random variable X is Gaussian when
Q.i:(g) > 2, but Levy stable when Q.,;;(¢) < 2. The difference must be reflected in the speed of
convergence of 7 to t.

How does the variability in the speed of convergence of t translate into the speed of convergence
of f(a)? When fin < 0, the estimate of f is very precise near « = & and becomes gradually
worse as one approaches the values of @ where f(«) = 0. When supersampling is used to extend
the estimated f to negative values, the reliability of the estimates becomes even worse.

The assertions made informally in this § deserve a careful and rigorous examination.

7. Asymptotics, Information-Theoretical and Thermodynamic
Formalisms; Their Meaning and Limitations

The unavoidable introduction of ELNA dimension and an ELNA Holder and the recognition
of the special roles of dimension and Holders that can be negative, marks a turn in fractal geometry.
It affects the profound and hard-to-escape connections that link the geometric notion of dimension
to the notion of entropy in statistical thermodynamics as well as the related notion of (Shannon)
information.

A first link is that every approach to multifractals involves at least some manipulations that
are more or less knowingly or directly borrowed from thermodynamics. For example, the proba-
bilists who work with large deviations view the Cramer theory as being thermodynamical. Also, the
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presentation of the multinomial multifractals (§5.2) follows the Lagrange multipliers path toward
thermodynamics. Finally, the method of steepest descents is used widely in the Darwin—Fowler
approach of thermodynamics, in some presentations of the Crameér theory [ ], and in the partition
function heuristics [4, 5].

Connections between multifractal and thermodynamics are equally obvious when, instead
of the logical deductions, one examines the final expressions yielded by those deductions. The
expression — Y p; log p; is a Boltzman’s entropy or Shannon’s information, and it occurs in theorems
of Besicovitch, Eggleston, and Volkmann. These theorems also provide a hint concerning the
similarity dimension log N/logb = log, N of a self-similar fractal set decomposable into N parts
reduced in the ratio 1/b. Indeed, log N is formally a Gibbs’s entropy.

What about the nonaveraged expression of the form — log p, which is used in this paper
to define ELNA dimension? A nonaveraged Boltzmann entropy is not used in thermodynamics,
but a nonaveraged Shannon information enters in some approaches to information theory. Thus,
given J letters of respective probabilities p;, some writers restrict their attention to the (average)
information per letter, — > _ p; log p;. But other writers also pay attention to the information — log p;
corresponding to the letter of index j. Since accepting or dismissing the nonaveraged information
brings substantial conceptual changes, is it useful to apply the terms “information theoretical” or
“thermodynamical” to those cases when D < 0?

Asymptotic descriptions in fractal geometry are associated with probability limit theorems,
and one might argue that the notion of thermodynamic property should cover everything that deals
with asymptotics. This would describe the whole function f(«) as being thermodynamic, including
the part in which f(«¢) < Oandeven« < 0.

In my opinion, this view would be overly inclusive. The notion of “thermodynamic property”
should be reserved to considerations that include strong limit theorems, and involve the resulting
fluctuation free asymptotic physics. This restricts f («) to the values f(«) > 0. The values f(a) < 0
solely concern Cramer’s weak limit theorem, hence, the nature of fluctuations as one approaches a
degenerate asymptotia. This is why the actual estimation of f(«) < 0 mustrely upon “supersamples”
or other methods that involve preasymptotics rather than asymptotics.

Using different words, a strict view of the thermodynamical interpretation leaves no room for
negative dimensions. However, the thermodynamic description based on probability limit theorems
may fail to be sufficiently precise, meaning that those limit theorems destroy valuable information. A
fuller description necessitates a knowledge of effects that are preasymptotic. One ought to reserve the
term “thermodynamic” for the fine-grained and partition-functional properties. The coarse-grained
properties that go beyond the thermodynamics are not macroscopic but “mesoscopic.” Negative
dimension is a mesoscopic notion.
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