19 = Cantor and Fatou Dusts;
Self-Squared Dragons

This chapter takes up two very simple families
of nonlinear transformations (mappings) and
investigates certain fractal sets which these
transformations leave invariant, and for which
they can serve as generators.

First, a broken line transformation of the
real line deepens our understanding of an old
acquaintance, the Cantor dust. These remarks
could have been squeezed into Chapter 8, but
they are better appreciated at this point.

In particular, they help appreciate the ef-
fect of the real and complex quadratic trans-
forms, of the form x—=f*(x) = x2—u, where x
and p are real numbers, or z-=f*(z) = zz—u,
where z=x+iy and g are complex numbers.

The elementary case p=0 is geometrically
dull, but other values of g involve extraordi-
nary fractal riches, many of them first re-
vealed in Mandelbrot 1980n.

The invariant shapes in question are best
obtained as a by-product of the study of itera-
tion, that is, of the repeated application of one
of the above transformations. The initial val-
ues will be denoted by Xxg or zg, and the k
times iterated transforms by f* will be denot-

ed by xi or z.

Iteration was studied in three rough stages.
The first, concerned with complex z, was
dominated by Pierre Fatou (1878-1929) and
by Gaston Julia (1893-1978). Their publica-
tions are masterpieces of classic complex anal-
ysis, greatly admired by the mathematicians,
but exceedingly difficult to build upon. In my
work, of which this chapter is a very concise
sketch, some of their basic findings are made
intuitive by combining analysis with physics
and detailed drawing. And innumerable new
facts emerge.

The resulting revival makes the properties
of iteration essential to the theory of fractals.
The fact that the Fatou-Julia findings did not
develop to become the source of this theory
suggests that even classical analysis the needs
intuition to develop, and can be helped by the
computer.

The intermediate stage includes P. J.
Myrberg’s studies of iterates of real quadratic
mappings of R (e.g., Myrberg 1962), Stein &
Ulam 1964, and Brolin 1965.

The current stage largely ignores the past,
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and concentrates on self-mappings of [0,1], as
surveyed in Gurel & Rdssler 1979, Helleman
1980, Collet & Eckman 1980, Feigenbaum
1981, and Hofstadter 1981. This chapter’s
last section concerns the exponent & due to
Grossmann & Thomae 1977 and Feigenbaum
1978: the existence of & is proven to follow
from a more perspicuous (fractal) property of
iteration in the complex plane.

THE CANTOR DUST CAN BE GENERATED
BY A NONLINEAR TRANSFORMATION

We know from Chapter 8 that the triadic
Cantor dust € is invariant by similitudes
whose ratio is of the form 3. This self-simi-
larity is a vital property, but it does not suf-
fice to specify C. In sharp contrast, C is
entirely determined as the largest bounded set
that is invariant under the following nonlinear
“inverted V" transformation:

x=>f(x) = {Ye—|x=Y2|} /r, with r="1.

More precisely, we apply this self-mapping of
the real axis repeatedly, with Xg spread out
over the x-axis, and the final values reduce to
the point x=-co, plus the Cantor dust C. The
fixed points x=0 and x=3% belong to C.
SKETCH OF A PROOF OF THE INVARIANCE OF
C. Since f(x)=3x when x<0, the iterates of all
the points xo<0 converge to —co directly, that
is, without ceasing to satisfy x,<0. For the
points Xp>1, direct convergence is preceded
by one preliminary step, since xx<O for all

k=1. For the points in the gap '5<xg<?3,
there are 2 preliminary steps, since x;>0 but
Xk<O0 for all k=2. For the points in the gaps
1/9<xp<2/9 or 7/9<x9<8/9, there are 3
preliminary steps. More generally, if an inter-
val is bounded by a gap that is sent to —oo
after k preliminary steps, this interval’s
(open) mid third will proceed directly to —oo
after the (k+1)st step. But a/l the points of €
are found to fail to converge to —co.

FINITENESS OF THE OUTER CUTOFF

To extend these results to the general Cantor
dust with N=2 and r between O and Y%, it
suffices to plug in the desired r in
f(x)={'2a—|x=Y%|} /r. To obtain any other
Cantor dust, the graph of f(x) must be an ap-
propriate zigzag curve.

However, no comparable method is availa-
ble for the Cantor dust extrapolated to the
whole real axis. This is a special case of a
very general feature: Typically, a nonlinear
f(x) carries within itself a finite outer cutoff
Q. To the contrary, as we know well, all linear
transformations (similarities and affinities)
are characterized by Q=oc0, and a finite @ (if
one is required) must be imposed artificially.

ANATOMY OF THE CANTOR DUST
We know from Chapter 7 that C is a very

“thin™ set, yet the behavior of the iterates of
f(x) leads to a better understanding of fine



distinctions between its points.

Everyone must be tempted, at first ac-
quaintance, to believe that € reduces to the
end points of the open gaps. But this is very
far from being the case, because ¢ includes by
definition all the limits of sequences of gap
end points.

This fact is not reputed intuitive. With
many fellow students, I would have agreed if
our battered acquaintance Hans Hahn had
listed these limit points among the concepts
whose existence must be imposed by cold log-
ic. But the present discussion yields intuitive
proof that these limit points have strong and
diverse personalities.

For example, the point x=%, which f(x)
leaves unchanged, lies neither within any mid
third interval, nor on its boundary. Points of
the form ><=(1/4)/3k have iterates that con-
verge to x=7%¥. In addition, there is an infinity
of limit cycles, each made up of a finite num-
ber of points. And C also contains points
whose transforms run endlessly around C.

THE SQUARING GENERATOR

The inverted V generating function f(x) used
in the preceding sections was chosen to yield a
familiar result. But it makes the Cantor dust
seem contrived. Now we replace it by

x> () =Ax(1-x),

whose unexpected wealth of properties was
first noted in Fatou 1906. Changing the origin

and the scale of the x, and writing
u=)\2/4—P\/2, this function can be written as

x=f*(x) = xz—u.

Convenience is served by using sometimes
f(x), and sometimes f*(x).

It is nice to call f(x) or f*(x) the squaring
generator. Squaring is, of course, an algebraic
operation, but it is given a geometric interpre-
tation here, so that the sets it leaves invariant
can be called self-squared. Strict squaring
replaces the point of abscissa x by the point of
abscissa x2. Thus, the self-squared points on
the line reduce to x=00, Xx=0, and x=1. The
addition of —p may seem totally innocuous,
but in fact it introduces totally unexpected
possibilities we now consider.

FATOU’'S REAL SELF-SQUARED DUSTS

Having yielded a familiar end product, the
Cantor dust., the V transformation makes an
extraordinary but never widely known discov-
ery of Pierre Fatou easier to state. Fatou 1906
assumes that X\ is real and satisfies A>4, and
he investigates the largest of the bounded sets
on IR, that are left invariant under f(x). This
is a close relative to the Cantor dust, which 1
call real Fatou dust. It requires no further
explanation, and is illustrated in Plate 192.

In the complex plane, the largest bounded
self-squared set, for the above A’s, remains the
real Fatou dust.
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SELF-SQUARED JULIA CURVES
IN THE PLANE (MANDELBROT 1980n)

The simplest self-squared curve is obtained
for p=0: it is the circle |z|]=1. By the trans-
formation z-z2, a belt wound once around
the circle stretches into a belt wound rwice,
the “buckle” at z=1 remaining fixed. The
corresponding largest bounded self-squared
domain is the disc |z|<1.

However, introducing a real u#0 (Plates
186 and 187), then a complex p (Plates 190
and 191), opens Pandora’s boxes of possibili-
ties, the Julia fractal curves. They satisfy the
eye no less than they satisfy the mind.

THE SEPARATOR S. The topology of the
largest bounded self-squared set depends on
where p lies with respect to a ramified curve
S, which I discovered and now call separator.
It is the connected boundary of the black
shape in bottom Plate 188 ; it is a “limit
lemniscate,” namely the limit for n—co of the
algebraic curves called lemniscates, defined
by |f(0)|=R for some large R. See Plate 189
for the structure of .S.

THE ATOMS. The open domain within §
splits into an infinity of maximal connected
sets I now propose to call “atoms.” Two
atoms’ boundaries either fail to overlap, or
have in common one point, to be called
“bond,” that belongs to .S.

TOPOLOGICAL DIMENSION. When u lies out-
side S, the largest bounded self-squared set is
a (Fatou) dust. When g lies within S, or is a
bond, the largest such set is a domain bound-
ed by a self-squared curve. At least some u on

Syield a tree-like curve.

SELF-SQUARED FRACTALS. These dusts and
curves being fractal when ps0 is rumored to
have been proven fully in some further cases
by Dennis Sullivan, and I harbor no doubt it
will be proven in all cases.

The shape of a self-squared dust or curve
varies continuously with g, hence D is bound
to be a smooth function of p.

RAMIFICATION. When A lies in one of the
open empty discs of top Plate 189, the self-
squared curve is a closed simple curve (not
ramified, a loop), as in Plates 186 and 187.

When A lies on the circles |A|=1 or
[A-2|=1, or in the surrounding open connect-
ed region, the self-squared curve is a ramified
net, with tremas bounded by fractal loops, like
the dragons in Plate 191.

When X lies in the very important island
molecules, which will soon prove to be regions
of nonconfluence to 1, the self-squared curve
is either a o-loop, or a ¢-dragon, as in bottom
Plate 190. The ¢ introduces no new loop.

p-ATOMS AND p-MOLECULES

To dissect the parameter map further is easier
when the parameter is p. A p-atom may be
heart-shaped, in which case it is the “seed” to
which an infinity of oval-shaped atoms bind
either directly or through intermediate atoms.
Mutually bound atoms, plus their bonds, form
a “molecule.” A seed’s cusp is never a bond.
To each atom is attached an integer w, its
“period.” When u lies in an atom of period w,
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the iterates f*(z) converge to co or to a stable
l[imit cycle conl’nmn{g w points. Within an
atom of period w, |f (zw))<1, where z, is any
point of the limit cydc corrcspondmg Lo . On
the atom’s boundary, |f, (z“)| = 1 wnhf (zu)
= 1 characterizing a cusp or a “‘root.’ ]:qch
atom contains a point to be Ld“td ‘nucleus,”
satisfying & (Zp) =0andf" (0)

The nualm on the real axis were mtroduud
by Myrberg (sce Myrberg 1962), and redis-
covered in Metropolis, Stein & Stein 1973.
The corresponding maps are often called

“superstable” (Collet & Eckman 1980).

Viewed as algebraic equation in py, £ w(0) =
0 is of order 2%=1 Hence, there could be at
most 2% ! atoms ot period w, but there are
fewer, except for w=1. For w=2, f;(O) =0
has 2 roots, but onc of them is already the
nucleus of an “old” atom of period 1. More
;:cncrall\«. all the roots of f* (O) = 0 are also
roots of f,__(0) = O where k is an integer > 1.
Next, obscrve that cach rational boundary
point on the boundary of an atom of period w,
defined as satislying f (Z“) exp(2wim/n),
where m/n is an 1rn.duub|c rational number
<1, carries a “receptor bond” ready to con-
nect to an atom of period nw. As a result,
some new atoms bind to existing receptor
bonds. But not all new atoms arc thereby ex-
hausted, and the remaining ones have no
choice but to sced new molecules. The mole-
cules are therefore infinite in number.

When g varies continuously in a molecule,
each outbound traversal of a bond leads to
bifurcation: w is multiplied by n. Example:
increasing a real-valued p leads to Myrberg’s
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period doubling. The inverse of bifurcation,
which Mandelbrot 1980n investigates and
calls confluence, must stop at the period of
the molecule’s seed. The continent molecule is
the region of confluence to c=1, and each
island molecule is a region of confluence to
c>1. The dragon’s or sub dragon’s shape is
ruled by the values of f* (zﬂ) and w/c.

THE SEPARATOR IS A FRACTAL CURVE;
FEIGENBAUM'S 6 AS A COROLLARY

I conjecture —=a via a ‘‘renormalization™
argument m= that atoms increasingly removed
from their molecule’s seed come increasingly
close to being identical in shape.

A corollary is that the boundary of each
molecule is locally self-similar. Since it is not
smooth on small scales, it is a fractal curve.

This local self-similarity generalizes a fact
concerning Myrberg bifurcation, due to
Grossmann & Thomae and to Feigenbaum.
The widths of increasingly small sprouts’ in-
tercepts by the real axis of X or u, converge to
a geometrically decreasing sequence, of ratio
6=4.66920... (Collet & Eckman 1980). In its
original form, the existence of & seems a tech-
nical analytic result. Now it proves to be an
aspect of a broader property of fractal scaling.

Fach bifurcation into m>2 introduces an
additional basic ratio. =



Plate 185 o SELF-SQUARED FRACTAL CURVES FOR REAL A

The shapes in Plates 185 to 192 are presented
here for the first time, except for a few that
are reproduced from Mandelbrot 1980n.

The left side of this plate represents the
maximal bounded self-squared domains for A
=1,1.5, 2.0, 2.5 and 3.0. The central black
shape spans the segment [0,1].

A=1: SCALLOP SHELL.

A=3: SAN MARCO DRAGON CURVE. This is

185

a mathematician’s wild extrapolation of the
skyline of the Basilica in Venice, together
with its reflection in a flooded Piazza; I nick-
named it the San Marco dragon.

The right side of this plate is relative to
A=3.3260680. This is the nuclear A (as de-
fined on p. 184) corresponding to w=2. The
corresponding self-squared shape is turned by
90° to make it fit in. HE



CAPTION CONTINUED FROM P. 188

TOP PLATE 188. This is part of the inverse
of the A-map with respect to A=1. Examining
on the A-map the sprouts whose roots are of
the form A=exp(2wi/n), one gains the im-
pression that ‘‘corresponding points™ lie on
circles. The present plate provides confirma-
tion. Other perceived circles are confirmed by
different inversions.

ISLAND MOLECULES. Many of the “spots”
around the maps are genuine ‘‘island
molecules,” first reported in Mandelbrot
1980n. They are shaped like the whole p map,
except for a nonlinear distortion.

SEPARATOR, SPINES AND TREES. The
boundary of the filled-in black domain in the
A- or g map is a connected curve I discovered
and call separator S The sct within .S de-
composes into open atoms (see text). When
the atom’s period is w, let us define its spine
as the curve where f:;‘{zn) is real.

The spines lying on the real axis are known
in the theory of self-mapping as [0,1], and
their closure is known to be [-2,4].

I discovered more generally that the clo-
sure of the other atom spines decomposes into
a collection of trees, ecach rooted on a receptor
bond. The list of orders of ramification at dif-
ferent points of such a tree is made up of 1
for the branch tips, plus the orders of bifurca-
tion leading to the tree’s root. Furthermore,
when the tree is rooted on an island atom, one
must add the orders of bifurcation leading
from [A=2|<1 or |]\|£1 to this atom.

BOTTOM LEFT PLATE 189. This is a detailed
A map near A=2—-exp(—2wi/3). The set with-
in .S is the limit of domains of the form
[fn(*2)| <R, whose boundaries are algebraic
curves called lemniscates. A few such domains
are shown here in superposition. For large n,
these domains seem disconnected, and so does
the X map, but in fact they connect outside
the grid used in the computation.

BOTTOM RIGHT PLATE 189. This is a de-
tailed X map near A=2—exp(—2xi/100). This
hundred-fold branching tree shares striking
features with the z map in Plate 191, ==

Plate 187 o
COMPOSITE OF SELF-SQUARED
FRACTAL CURVES FOR REAL X

This draped “‘sculpture™ was made within a
computer’s memory, by a process that
amounts to whittling away all points in an
initial cube, whose iterates by z-=iz(1-z)
converge to infinity. The parameter A is a real
number ranging from 1 to 4. The A\ axis runs
vertically along the sculpture’s side. And x
and y form the complex number z=x+iy.

Each horizontal section is a maximal
bounded self-squared shape of parameter w.

For the special value A=2, this section’s
boundary is a circle: the drape’s “belt.”

For all other values of A, the self-squared
shape’s boundaries are fractal curves, includ-
ing those shown in Plate 185. One perceives
striking “*pleats™ whose position varies contin-
uously with X; they are pressed in below the
belt, and pressed owt above the belt.

Of special interest are the blobs on the
wall holding the drape. This sculpture cannot
possibly do justice to the complication of the
top of the drape. A) For every value of A, the
drape includes, as “‘backbone,” a fractal tree
formed by the iterated pre-images of the
x-interval [0,1]. For all small, and some high
values of A<3, this tree’s branches are com-
pletely ““covered by flesh.” For other high val-
ues of A, however, there is no [lesh. The
branches along either x="% or y=0 are visible
here, but the graphic process unavoidably
misses the rest. B) Certain horizontal stripes
of the wall behind the drape are entirely cov-
ered with tiny “*hills” or “corrugations,” but
only a few of the largest ones can be seen.
These stripes and hills concern the “‘island
molecules™ (Plates 188 and 189) intersected
by the real axis. Observations A) and B) gen-
eralize the Myrberg-Feigenbaum theory. 8
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Plates 188 and 189 © THE SEPARATORS OF z>\z(1-z) AND OF z-z°—p

BOTTOM PLATE 188. u-MAP.The u in the closed
black areca (bounded by a fractal curve) are
such that the iterates of zg=0 under Z:52%—p
fail to converge to co. The large cusp is
p=—Ya, and the right-most point is p=2.

TOP PLATE 189. A-MAP. The X in the closed
black area, plus the empty disc, satisfy
Rer>1 and are such that the iterates of
Zg=" under z-=Az(1-2z) fail to converge to
oo. The full A map is symmetric with respect
to the line ReA=1.

THE DISC |[A—2|<1, AND THE DISC [A\<1
LESS A=0. The X in these domains are such
that the iterates of zg='2 converge to a
bounded limit point.

CORONA AND SPROUTS. The A-map outside
the empty discs forms a ‘“‘corona.” It splits
into “‘sprouts,” whose “‘roots’ are ‘‘receptor
bonds” defined as the points of the form
A=exp(2xim/n) or A=2-exp(2wim/n),
with m/n an irreducible rational number <1.

CAPTION

CONTINUES
ON P. 186

-

6. ..






Plates 190 and 191 & SELF-SQUARED DRAGONS; APPROACH TO THE ““PEANO’’ LIMIT

FEach self-squared curve is attractive in its
own way. And the most attractive ones to me
are the ‘“dragons™ shown in the present fig-
ures and in Plate CS.

DRACONIC MOLTING. To watch a dragon in
the process of self-squaring would be a fasci-
nating sight! A monstrous “molting”’ detaches
the skins of a dragon’s belly and back from
their innumerable folds. Then, it stretches
each skin to twice its length, which of course

remains infinite all along! Next, it folds each
skin around the back as well as the belly. And
finally, it re-attaches all the folds neatly in
their new positions.

FRACTAL HERALDRY. The self-squared drag-
ons must not be confused with the self-similar
one of Harter & Heightway, Plates 66 and
67. The reader may find it amusing to detail
the similarities and the many differences.

CAPTION CONTINUES ON P. 192
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CAPTION CONTINUED FROM P. 190

SUCCESSIVE BIFURCATIONS. The best self-
squared dragons obtain where X lies in a
sprout of Plate 189 that corresponds to
8/2x=m/n, with small integers n and m.
Given the bifurcation order n, the number of
dragon heads or tails (or whatever these do-
mains should be called) around each articula-
tion point is n. A second bifurcation of order
m'/n" splits each of these domains into n'
“sausage links,” and thins them down.

Dragons with a nice heft, neither obese nor
skinny, obtain when A lies within a sprout, at
some distance away from the root. Dragons
with a nice twist obtain when A lies near one
of the 2 subsprouts corresponding to an order
of bifurcation of 4 to 10: one subsprout yields
a leftward, the other a rightward, twist.

RIGHT TOP OF PLATE 190. "STARVED
DRAGON.” A dragon subjected to infinitely
many bifurcations loses all flesh and collapses
into a skeletal branched curve.

The topological dimension of the set that
fails to go to co is O for the Fatou dusts, 1 for
starved dragons, and 2 for other dragons.

BOTTOM OF PLATE 190. ¢-DRAGON. This
shape is connected; its A lies in the large
“offshore island™ in bottom right Plate 189.

PLATE 191. THE SINGULAR LIMIT A=1.
PEANO DRAGONS. Let A lie in an island off-
shore of the bond at #=2x/n. As n-=co,
60, hence X tends to 1. The corresponding
dragon must necessarily converge to the scal-
lop shape at the base of the drape in Plate
187. But a qualitative difference separates
n=co from n large but finite.

As n-co, the dragon’s arms grow in num-
ber, the skin crumples, and the skin’s dimen-
sion increases. The whole really attempts to
converge to a “‘hermit-dragon” that would fill
the shell of a A=1 scallop to the brim, i.e., to
the dimension D=2. A self-squared Peano
curve? Yes, but we know from Chapter 7 that
Peano curves arc not curves: as it attains
D=2, our dragon curve dies as a curve to be-
come a plane domain. =S

Plate 192 = REAL SELF-SQUARED FATOU
DUSTS ON [0,1]

Fatou 1906 is a masterpiece of an odd literary
genre: the Comptes Rendus Notes of the Paris
Academy of Sciences. In many cases, the pur-
pose is to reveal little, but to squirrel evidence
that the author had thought of everything.

Among other marvelous remarks best un-
derstood after long seclf-study, Fatou 1906
points out the following. When X is real and
either A>4 or A<-2, the largest bounded set
that the transformation x=f(x) = Ax(1-x)
leaves invariant is a dust contained in [O,1].
This plate illustrates this dust’s shape for
A>4. Along the vertical coordinate, —4 /X var-
ies from —1 to 0. The black intervals mark
the end points of the tremas of order 1 to 5.
The end points x; and x2 of the mid trema
are solutions of the equation Ax(1-x)=1; they
draw a parabola. Second-order tremas end at
the points X1 2, X1,2, X2,1, and X2 2, such that
A n(1=Xm n) = Xm, etc.

The remarkable relation between Cantor-
like dusts and one of the most elementary
among all functions deserves to be known be-
yond the circle of specialists. Hl
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