VI oo SELF-MAPPING FRACTALS

18 n Self-Inverse Fractals, Apollonian Nets,and Soap

The bulk of this Essay is devoted to fractals
that are either fully invariant under simili-
tudes or, at least, “nearly” self-similar. As a
result, the reader may have formed the im-
pression that the notion of fractal is wedded
to self-similarity. Such is emphatically not the
case, but fractal geometry must begin by
dealing with the fractal counterparts of
straight lines... call them “linear fractals.”

Chapters 18 and 19 take the next step.
They sketch the properties of fractals that
are, respectively, the smallest sets to be invar-
iant under geometric inversion, and the
boundaries of the largest bounded sets to be
invariant under a form of squaring.

Both families differ fundamentally from
the self-similar fractals. Appropriate linear
transformations leave scaling fractals invari-
ant, but in order to generate them, one must
specify a generator and diverse other rules.
On the other hand, the fact that a fractal is
“generated” by a nonlinear transformation,

often suffices to determine, hence generate, its
shape. Furthermore, many nonlinear fractals
are bounded, i.e., have a built-in finite outer
cutoff 2<co. Those who find 2=co objection-
able ought to be enchanted by its demise.

The first self-inverse fractals were intro-
duced in the 1880’s by Henri Poincaré and
Felix Klein, not long after the discovery by
Weierstrass of a continuous but not differenti-
able function, roughly at the same time as the
Cantor sets, and well before the Peano and
Koch curves and their scaling kin. The irony
is that scaling fractals found a durable niche
as material for well-known counterexamples
and mathematical games, while self-inverse
fractals became a special topic of the theory
of automorphic functions. This theory was
neglected for a while, then revived in a very
abstract form. One reason why the self-in-
verse fractals were half-forgotten is that their
actual shape has remained unexplored until
the present chapter, wherein an effective new
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construction is exhibited.

The chapter’s last section tackles a prob-
lem of physics, whose star happens to be the
simplest self-inverse fractal.

BIOLOGICAL FORM AND “SIMPLICITY"

As will be seen, many nonlinear fractals “look
organic,” hence the present aside concerned
with biology. Biological form being often very
complicated, it may seem that the programs
that encode this form must be very lengthy.
When the complication seems to serve no pur-
pose (as is often the case in fairly simple crea-
tures), the fact that the generating programs
were not rubbed off to leave room for useful
instructions is paradoxical.

However, the complications in question are
often highly repetitive in their structure. We
may recall from the end of Chapter 6 that a
Koch curve must not be viewed as either ir-
regular or complicated, because its generating
rule is systematic and simple. The key is that
the rule is applied again and again, in succes-
sive loops. Chapter 17 extends this thought to
the pre-coding of the lung’s structure.

In Chapters 18 and 19 we go much further
and find that some fractals generated using
nonlinear rules recall either insects or cephal-
opods, while others recall plants. The paradox
vanishes, leaving an incredibly hard task of
actual implementation.

STANDARD GEOMETRIC INVERSION

After the line, the next simplest shape in Eu-
clid is the circle. And the property of being a
circle is not only preserved under similitude,
but also under inversion. Many scholars have
never heard of inversion since their early
teens, hence the basic facts bear being restat-
ed. Given a circle C of origin O and radius R,
inversion with respect to C transforms the
point P into P' such that P and P' lie on the
same half line from O, and the lengths |OP|
and |OP'| satisfy |OP|OP'| = R“. Circles
containing O invert into straight lines not con-
taining O, and conversely (see below). Circles
not containing O invert into circles (third fig-
ure below). Circles orthogonal to C, and
straight lines passing through O, are invariant
under inversion in C (fourth figure).
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Now consider jointly the three circles Cy,
Cop, and C3. Ordinarily, for example when the
open bounded discs surrounded by the C,, are
nonoverlapping, there exists a circle I' orthog-
onal to every Cn,, see above. When I' exists, it
is jointly self-inverse with respect to the Cp,.

The preceding bland results nearly exhaust
what standard geometry has to say about
self-inverse sets. Other self-inverse sets are
fractals, and most are anything but bland.

GENERATOR. SELF-INVERSE SETS. As usual,
we begin with a generator, which is in the
present case made up of any number M of
circles Cp,. The transformations made of a
succession of inversions with respect to these
circles form what algebraists call the group
generated by these inversions; call it §. The
formal term for ‘‘self-inverse set” is ‘“‘a set
invariant under the operations of the group
g.$$

SEEDS AND CLANS. Take any set .S (call it
a seed), and add to it the transforms of S by
all the operations of §. The result, to be
called here the clan of S, is self-inverse. But
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it need not deserve attention. For example, if
S'is the extended plane IR* (the plane IR plus
the point at infinity), the clan of S is identi-
cal to R*=S.

CHAOTIC INVERSION GROUPS. Furthermore,
given a group § based upon inversions, it may
happen that the clan of every domain S cov-
ers the whole plane. If so, the self-inverse set
must be the whole plane. For reasons that
transpire in Chapter 20, | propose that such
groups be called chaotic. The nonchaotic
groups are due to Poincaré, but are called
Kleinian: Poincaré had credited some other
work of Klein’s to L. Fuchs, Klein protested,
Poincaré promised to label his next great dis-
covery after Klein—and he did!

Keeping to nonchaotic groups, we discuss
three self-inverse sets singled out by Poincareé,
then a fourth set of uncertain history, and a
fifth set whose importance I discovered.

HYPERBOLIC TESSELLATION OR TILING

Few of Maurits Escher’s admirers know that
this celebrated draftsman’s inspiration often
came straight from “‘unknown’ mathemati-
cians and physicists (Coxeter 1979). In many
cases, Escher added decorations to self-inverse
tessellations known to Poincaré and illustrated
extensively in Fricke & Klein 1897.

These sets, to be denoted by 7, are ob-
tained by merging the clans of the circles C,
themselves.

<a ( being assumed nonchaotic, the com-
plement of the merged clans of the Cp, is a
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collection of circular polygons called “open
tiles.” Any open tile (or its closure) can be
transformed into any other open (closed) tile
by a sequence of inversions belonging to G. In
other words, the clan of any closed tile is IR*.
More important, the clan of any open tile is
the complement of 5. And T is, so to speak,
the ““grout line” of these tiles. R* is self-in-
verse. - and the complement of 7/ are self-
inverse and involve a “*hyperbolic tiling” or
“tessellation”™ of IR*. (The root is the Latin
tessera = a square, from the Greek recoapes
= four, but tiles can have any number of cor-
ners greater than 2.) In Escher’s drawings,
each tile bears a fanciful picture. »

AN INVERSION GROUP’'S LIMIT SET

The most interesting self-inverse set is the
smallest one. It is called the limit set, and
denoted by -, because it is also the set of lim-
it points of the transforms of any initial point
under operations of the group g It belongs to
the clan of any seed .S. To make a technical
point clearer: it is the set of those limit points
that cannot also be attained by a finite num-
ber of inversions. Intuitively, it is the region
where infinitesimal children concentrate.

oL may reduce to a point or a circle, but in
general it is a fragmented and/or irregular
fractal set.

< [ stands out in a tessellation, as the
“set of infinitesimally small tiles.” It plays,
with respect to the finite parts of the tessella-
tion, the role the branch tips (Chapter 16)

play with respect to the branches. But the sit-
uation is simpler here: like -, the tesselation
is self-inverse without residue. »=

APOLLONIAN NETS AND GASKETS

A set L is to be called Apollonian if it is
made of an infinity of circles plus their limit
points. In this case, its being fractal is solely
the result of fragmentation. This case was
understood (though in diffuse fashion) at an
early point of the history of the subject.

First we construct a basic example, then
show it is self-inverse. Apollonius of Perga
was a Greek mathematician of the Alexand-
rine school circa 200 B.C. and close follower of
Euclid, who discovered an algorithm to draw
the five circles tangent to three given circles.
When the given circles are mutually tangent,
the number of Apollonian circles is two. As
will be seen momentarily, there is no loss of
generality in assuming that two of the given
circles are exterior to each other but con-
tained within the third, as follows:
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These three circles define two circular trian-
gles with angles of 0°. And the two Apolloni-
an circles are the largest circles inscribed in
these triangles, as follows:

The Apollonian construction concludes
with five circles, three given and two Apollo-
nian, which together define six circular trian-
gles. Repeating the same procedure, we draw
the largest inscribed circle in each triangle.
Infinite further repetition is called Apollonian
packing. To the resulting infinite collection of
circles one adds its limit points, and one ob-
tains a set I call Apollonian net. A portion of
net within a circular triangle, as exemplified
to the right, is to be called Apollonian gasket.

If one of the first generation Apollonian
circles is exchanged for either of the inner
given circles, the limit set is unchanged. < If
said Apollonian circle is made to replace the
outer given circle, the construction starts with
three given circles exterior to each other, and
one of the first stage Apollonian circles is the
smallest circle circumscribed to the three giv-
en circles. After this atypical stage, the con-
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struction proceeds as above, proving that our
figures involve no loss of generalities m.

LEIBNIZ PACKING. Apollonian packing re-
calls a construction I call Leibniz packing of a
circle, because Leibniz described it in a letter
to de Brosses: ‘“‘Imagine a circle; inscribe
within it three other circles congruent to each
other and of maximum radius; proceed simi-
larly within each of these circles and within
each interval between them, and imagine that
the process continues to infinity....”
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APOLLONIAN NETS ARE SELF-INVERSE

Let us now return to the starting point of the
construction of Apollonian net: three circles
tangent to each other. Add either one of the
corresponding Apollonian circles, and call the
resulting 4 circles I' circles. Here they are
shown by bold curves.

There are 4 combinations of the I' circles
3 by 3, to be called triplets, and to each cor-
responds a circle orthogonal to each circle in
the triplet. We take these new circles as our
generator, and we label them as C;, Cp, C3,
and Cg4, (the diagram below shows them as
thin curves). And the I' circle orthogonal to
Ci, Cj, and Cy will be labeled as Tjj.

Having set these tedious labels, here is the
payoff: Simple inspection shows that the
smallest (closed) self-inverse set with respect
to the 4 generating circles Cp, is the Apolloni-
an net constructed on the 4 circles I'. Curi-
ously, this observation is nowhere explicit in
the literature, but it must be widely known.

A more careful inspection shows that each
circle in the net transforms into one of the T
circles through a unique sequence of inver-
sions with respect to the C circles. In this
way, the circles in the Apollonian net can be
sorted out into 4 clans; the clan descending
from T, will be denoted as § Tjjy.

NET KNITTING WITH A SINGLE THREAD

The Apollonian gasket and the Sierpinski
gasket of Plate 141 share an imporant feature:
the complement of the Sierpinski gasket is a
union of triangles, a o-triangle, and the com-
plement of an Apollonian net or gasket is a
union of discs, a o-disc.
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But we also know that the Sierpinski gas-
ket admits of an alternative Koch construc-
tion, in which finite approximations are tera-
gons (broken lines) without self-contact, and
double points do not come in until one goes to
the limit. This shows that the Sierpinski gask-
et can be drawn without ever lifting the pen;
the line will go twice over certain points but
will never go twice over any interval of line.

To change metaphors, the Sierpinski gask-
et can be knitted with a single loop of thread!

The same is true of the Apollonian net.

NON-SELF-SIMILAR CASCADES, AND
THE EVALUATION OF THE DIMENSION

The circular triangles of Apollonian packing
are not similar to each other, hence the Apol-
lonian cascade is not self-similar, and the
Apollonian net is not a scaling set. One must
resort to the Hausdorff Besicovitch definition
of D (as exponent used to define measure),
which applies to every set, but the derivation
of D proves surprisingly difficult. Thus far
(Boyd 1973a,b), the best one can say is that

1.300197<D<1.314534,

but Boyd’s latest (unpublished) numerical
experiments yield D~1.3058.

In any event, since D is a fraction while
Dt=1, the Apollonian gasket and net are
fractal curves. In the present context, D is a
measure of fragmentation. When, for exam-
ple, the discs of radius smaller than ¢ are “cut
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off,” the remaining interstices have a perime-
ter proportional to ¢170 and a surface propor-
tional to €2 D.

LN NON-FUCHSIAN POINCARE CHAINS

Inversions with respect to less special configu-
ration of the generating circles Cp,, lead to
self-inverse fractals that are less simple than
any Apollonian net. A workable construction
of mine, to be presented momentarily, charac-
terizes - suitably in most cases. It is a great
improvement over the previous method, due to
Poincaré and Klein, which is cumbersome and
converges slowly.

But the older method remains important,
so let us go through it in a special case. Let
the Cy, form a configuration one may call
Poincaré chain, namely a collection of M cir-
cles C, numbered cyclically, so that Cp, is
tangent to Cp_1 and to Crp41 (modulo M),
and intersects no other circle in the chain. In
that case, o' is a curve that separates the
plane into an inside and an outside. (As hom-
age to Camille Jordan, who first saw that it is
not obvious that the plane can thus be subdi-
vided by a single loop, such loops are called
Jordan curves.)

When all the Cp, are orthogonal to the
same circle I', £ is identical to T'. This case,
called Fuchsian, is excluded in this chapter.

POINCARE'S CONSTRUCTION OF L. The cus-
tomary construction of o' and my alternative
will be fully described in the case of the fol-
lowing special chain with M=4:
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To obtain £, Poincaré and Fricke & Klein
1897 replace the original chain, in stages, by
chains made of an increasing number of in-
creasingly small links. The first stage replaces
every link C; by the inverses in C; of the links
Cp other than C;, thus creating M(M-1) =
12 smaller links. They are shown in the fac-
ing column, superimposed on a (gray) photo-
graphic negative of the original links. And
each stage takes the chain with which it start-
ed and inverts it in each of the original Cp.
Here several stages are shown in black, each
being superposed on the preceding one, shown
in white on gray background. Ultimately, the
chain thins out to its thread, which is £,

Unfortunately, some links remain of sub-
stantial size after large numbers of stages,
and even fairly advanced approximate chains
give a poor idea of of . This difficulty is ex-
emplified in horrid fashion in Plate 179.
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THE NOTION OF FRACTAL OSCULATION

My alternative construction of - involves a
new fractal notion of osculation that extends
an obvious facet of the Apollonian case.

STANDARD OSCULATION. This notion is
linked to the concept of curvature. To the first
order, a standard curve near a regular point P
is approximated by the tangent straight line.
To the second order, it is approximated by the
circle, called osculating, that has the same
tangent and the same curvature.

To index the circles tangent to the curve at
P, a convenient parameter, u, is the inverse of
the (arbitrarily oriented) distance from P to
the circle’s center. Write the index of the os-
culating circle as ug. If u<ug, a small portion
of curve centered at P lies entirely on one side
of the tangent circle, while if u>ug it lies en-
tirely on the other side.

This ug is what physicists call a critical
value and mathematicians call a cut. And |ug|
defines the local “curvature.”

GLOBAL FRACTAL OSCULATION. For the
Apollonian net, the definition of osculation
through the curvature is meaningless. Howev-
er, at every point of the net where two pack-
ing circles are tangent to each other, they ob-
viously “embrace” the rest of ./ between
them. It is tempting to call both of them
osculating.

To extend this notion to a non-Apollonian
sets L, we take a point where o/ has a tan-
gent, and start with the definition of ordinary
osculation based on criticality (= cut). The
novelty is that, as u varies from —oco to +oo,
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the single critical ug is replaced by two dis-
tinct values, u' and u">u', defined as follows:
For all u<u', £ lies entirely to one side of our
circle, while for all u<u", £ lies entirely to
the other side, and for u'<u<u", parts of £
are found on both sides of the circle. I suggest
that the circles of parameters u' and u" both
be called fractally osculating.

Any circle bounds two open discs (one in-
cludes the circle’s center, and the other in-
cludes the point at infinity). The open discs
bounded by the osculating circles and lying
outside o will be called osculating discs.

[t may happen that one or two osculating
circles degenerate to a point.

LOCAL VERSUS GLOBAL NOTIONS. Return-
ing to standard osculation, we observe that it
is a local congept, since its definition is inde-
pendent of the curve’s shape away from P. In
other words, the curve, its tangent, and its
osculating circle may intersect at any number
of points in addition to P. By contrast, the
preceding definition of fractal osculation is
global, but this distinction is not vital. Fractal
osculation may be redefined locally, with a
corresponding split of *“‘curvature” into 2
numbers. However, in the application at hand,
global and local osculations coincide.

OSCULATING TRIANGLES. —a Global fractal
osculation has a counterpart in a familiar con-
text. To define the interior of our old friend
the Koch snowflake curve K as a sigma-
triangle (o-triangle), it suffices that the trian-
gles laid at each new stage of Plate 42 be
lengthened as much as is feasible without in-
tersecting the snowflake curve. »
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o-DISCS THAT OSCULATE ./

Osculating discs and o-discs are the key of my
new construction of £, which is free from the
drawbacks listed on p. 173. This construction
is illustrated here for the first time (though it
was previewed in 1980, in The 1981 Springer
Mathematical Calendar'). The key is to take
the inverses, not of the C, themselves, but of
some of circles T'jjk, which (as defined on page
171) are orthogonal to triplets C;, Cj, and Cy.
Again, we assume that the Ty are not all
identical to a single T'.

RESTRICTION TO M=4. The assumption
M=4 insures that, for every triplet i,j,k, either
one or the other of the two open discs bound-
ed by Tjjk—namely, either its inside or its
outside—contains none of the points ¥mn
which we define on page 173. We shall denote
this y-free disc by Ajj.

My construction of £ is rooted in the fol-
lowing observations: every 7y-free Ajj oscu-
lates L% so do their inverses and repeated in-
verses in the circles Cqy; and the clans built
using the Ajjx as seeds cover the whole plane
except for the curve L.

Plate 177 uses the same Poincaré chain as
already used on page 173, but is drawn on
larger scale. As is true in most cases, the first
stage outlines £ quite accurately. Later stages
add detail very ‘“‘efficiently,” and after few
stages the mind can interpolate the curve £
without the temptation of error present in the
Poincaré approach.

GENERALIZATIONS

CHAINS WITH FIVE OR MORE LINKS. When the
number of original links in a Poincaré chain is
M>4, my new construction of - involves an
additional step: it begins by sorting the I' cir-
cles into 2 bins. Some I circles are such that
each of the open discs bounded by I' contains
at least one point Ymn; as a result, Ajj is not
defined. Such I circles intersect £ instead of
osculating it. But they are not needed to con-
struct L.

The remaining circles Tjjk define osculat-
ing discs Ajjk that fall into two classes. Add-
ing up the clans of the Ajjk in the first class,
one represents the interior of £, and adding
up the clans of the Ajy in the second class,
one represents the exterior of L.

The same is true in many (but not all) cas-
es when the Cp, fail to form a Poincaré chain.

OVERLAPPING AND/OR DISASSEMBLED
CHAINS. When Cp, and C,, have two intersec-
tion points ¥'mn and ¥'' mn, these points joint-
ly replace v. When C, and C,, are disjoint, vy
is replaced by the two mutually inverse points
¥'mn and ¥"mn. The criterion for identifying
Ajjk becomes cumbersome to state, but the
basic idea is unchanged.

RAMIFIED SELF-INVERSE FRACTALS. /' may
borrow features from both a crumpled loop
(Jordan curve), and an Apollonian net, yield-
ing a fractally ramified curve akin to those
examined in Chapter 14, but often much more
baroque in appearance, as in Plate C7.

SELF-INVERSE DUSTS. It may also happen
that L is a fractal dust.
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THE APOLLONIAN MODEL OF SMECTICS

This section outlines the part that Apollonian
packing and fractal dimension play in the de-
scription of a category of “liquid crystals.” In
doing so, we cast a glance toward one of the
most active areas of physics, the theory of
critical points. An example is the “point” on
a temperature-pressure diagram that describes
the physical conditions under which solid, lig-
uid, and gaseous phases can coexist at equilib-
rium in a single physical system. The analytic
characteristics of a physical system in the
neighborhood of a critical point are scaling,
therefore governed by power laws, and speci-
fied by critical exponents (Chapter 36). Many
of them turn out to be fractal dimensions; the
first example is encountered here.

Since liquid crystals are little known, we
describe them by paraphrasing Bragg 1934.
These beautiful and mysterious substances are
liquid in their mobility and crystalline in their
optical behavior. Their molecules are relative-
ly complicated structures, lengthy and chain-
like. Some liquid crystal phases are called
smectic, from the Greek ounypa signifying
soap, because they constitute a model of a
soaplike organic system. A smectic liquid
crystal is made of molecules that are arranged
side by side like corn in a field, the thickness
of the layer being the molecules’ length. The
resulting layers or sheets are very flexible and
very strong and tend to straighten out when
bent and then released. At low temperatures,
they pile regularly, like the leaves of a book,
and form a solid crystal. When temperatures
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rise, however, the sheets become able to slide
easily on each other. Each layer constitutes a
two-dimensional liquid.

Of special interest is the focal conics struc-
ture. A block of liquid crystal separates into
two sets of pyramids, half of which have their
bases on one of two opposite faces and vertic-
es on the other. Within each pyramid, liquid
crystal layers fold to form very pointed cones.
All the cones have the same peak and are ap-
proximately perpendicular to the plane. As a
result, their bases are discs bounded by cir-
cles. Their minimum radius ¢ is the thickness
of the liquid crystal’s layers. Within a spatial
domain such as a square-based pyramid, the
discs that constitute the bases of the cones are
distributed over the pyramid’s base. To obtain
an equilibrium distribution, one begins by
placing in the base a disc of maximum radius.
Then another disc with as large a radius as
possible is placed within each of the four re-
maining pieces, and so on and so forth. If it
were possible to proceed without end, we
would achieve exact Apollonian packing.

The physical properties of of this model of
soap depend upon the surface and perimeter
of the sum of interstices. The link is affected
through the fractal dimension D of a kind of
photographic “negative,” the gasket that the
molecules of soap fail to penetrate. Details of
the physics are in Bidaux, Boccara, Sarma,
Séze, de Gennes & Parodi 1973. ==



PLATE 177 1 A SELF-INVERSE FRACTAL
(MANDELBROT CONSTRUCTION)

This Plate illustrates page 175.

TOP FIGURE. In Poincaré chains with M=4,
at least one of the discs Ajjx is always un-
bounded, call it Ajp3, and it intersects the
disc Azq1. (Here, A34; is also unbounded, but
in other cases it is not.) The union of Ajs3
and Aszgq, shown in gray, provides a first ap-
proximation of the outside of L. It is analo-
gous to the approximation of the outside of
Koch’s _K by the regular convex hexagon in
Plate 43.

The discs Ap3q and Agyo intersect, and
their union, shown in black, provides a first
approximation of the inside of £ It is analo-
gous to the approximation of the inside of _X
by the two triangles that form the regular star
hexagon in Plate 43.

MIDDLE FIGURE. A second approximation of
the outside of - is achieved by adding to
Ajp3 and Agzyj their inverses in C4 and Cop,
respectively. The result, shown in gray, is ana-
logous to the second approximation of the out-
side of _K'in Plate 43.

The corresponding second approximation
of the inside of £ is achieved by adding to
Ap34 and Ay their inverses in C; and Cg,
respectively. The result, shown in black, is
analogous to the second approximation of the
inside of _K'in Plate 43.

BOTTOM FIGURE. The outside of £, shown
in gray, is the union of the clans of Ajp3 and
A341. And the inside of £, shown in black, is
the union of the clans of As34 and Agyz. The
fine structure of the inside of £ is seen in the
bottom Plate 179, using a different Poincaré
chain. Together, the black and gray open re-
gions cover the whole plane, minus ./, R
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Plate 178 o SELF-HOMOGRAPHIC FRACTAL, NEAR THE PEANO LIMIT

To the mathematician, the main interest of
groups based upon inversions resides in their
relation with certain groups of homographies.
An homography (also called Mébius, or frac-
tional linear transformation) maps the z-plane
by z-(az+b)/(cz+d), where ad—bc=1. The
most general homography can be written as
the product of an inversion, a symmetry with
respect to a line (which is a degenerate inver-
sion), and a rotation. This is why, in the ab-
sence of rotation, the study of homographies
learns much from the study of groups based
on inversions. But it is obvious that allowing
the rotations brings in new riches.

Here is an example of limit set £ for a
group of homographies. David Mumford de-
vised it (in the course of investigations in-
spired by the new results reported in this
chapter), and kindly allowed its publication
here. This shape is almost plane-filling, and
shows uncanny analogies and differences with
the almost plane-filling shape in Plate 191.

The fact that the limit set of a group of
homographies is a fractal has been proven
under wide conditions by T. Akaza, A. F.
Beardon, R. Bowen, S. J. Patterson, and D.
Sullivan. See Sullivan 1979, =
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Plate 179 o A CELEBRATED
SELF-INVERSE FRACTAL, CORRECTED
(MANDELBROT CONSTRUCTION)

The top left reproduces Figure 156 of Fricke
& Klein 1897, which claims (in my terminolo-
gy) to represent the self-inverse fractal whose
generator is made of the 5 circles that bound
the blackened central region. This Figure has
been reproduced very widely.

The outline of the black shape on the top
right shows the actual shape of this fractal, as
given by my osculating o-disc construction.
The discrepancy is horrid. Fricke knew that ./’
incorporates circles, and he instructed his
draftsman to include them. But otherwise
Fricke did not know what sort of very irregu-
lar shape he should expect.

The actual L includes the boundary £* of
the shape drawn on the bottom right using my
algorithm. This £* is the self-inverse fractal
corresponding to the four among the generat-
ing circles that form a Poincaré chain. Trans-
forms of -{* by other inversions are clearly
seen to belong to -£. Mandelbrot 1982i elabo-
rates upon this plate. HE
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