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his article concerns the fractal trees that are obtained recursively by symmetric bi-

nary branching. A trunk of length 1 divides into two branches of length r, each of

which makes an angle 6 > 0° with the linear extension of the trunk. Each branch

then divides by the same rule. Some basic information on such trees is found in

Chapter 16 of [FGN], on which this article elaborates.

It is well known that the branch tips of these trees can take
any dimension satisfying 0 < D = 2. Moreover, when 1 <
D << 2, it is possible for different branches to have tips, but
no other points, in common. These trees, to be called “self-
contacting,” include points one cannot access from infin-
ity, except by crossing a composite curve called the “hull.”
In the interesting cases, the hull includes a fractal called the
“canopy.”

For 6 < 90°, the canopy can be characterized in another
way: as the shortest path along the branch tips from the
upper left corner to the upper right corner. The self-con-
tacting branch tips screen from infinity some other branch
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tips, thus providing shortcuts between parts of the tree, ef-
fectively jumping over the screened regions.

For 6 = 90°, the canopy is disconnected because of ad-
ditional screening by branch segments. The shortest path
along branch tips remains a variant of the Koch curve, so
the shortest path and canopy no longer coincide. The frac-
tal dimensions of the canopy, shortest path, and the set of
branch tips are compared in the range 0° < 6 << 180°.

For certain ranges of 6, the canopy, shortest path, and
the set of branch tips are Koch curves. Consequently, the
constructions presented here provide alternative ways to
draw Koch curves.



In addition, the angles # = 90° and 8 = 135° mark pro-
found topological discontinuities in the canopy and short-
est path. Consequently, we think of these as fopological
critical points.

The structure of self-avoiding and self-contacting trees
(with their canopies and shortest paths) is instructive and
entertaining. It seems to make the subtle distinction be-
tween denumerable and nondenumerable infinity concrete
and near-palpable.

A Classification of Binary Trees

In the preceding construction, each branch is determined
by a finite number of choices of the form “bear left” or
“bear right,” so each branch defines, in obvious fashion, an
“address” that is a finite sequence of letters L and R.
Therefore, the branches are denumerable. For r = 1, the
outcome of this construction is easily seen to be un-
bounded. For example, LRLRLR... = (LR)* defines a se-
quence in which every R branch is vertical and every L
branch makes an angle § with the vertical. Thus, the total
vertical extent of this branch sequence is

1+ 7rcos(8) + r2 + r3 cos(f) + r* + -,

diverging forr = 1. However, if r < 1, alimit tree is reached
after an infinite number of branchings; it depends on # and
will be denoted by 7. Each branch tip defines an address
that is an infinite sequence of L and R. A tip’s ad-

dress is the same as an infinite sequence

of 0 and 2, hence, in turn, the same
as a point in the classic ternary
Cantor set.

Many geometrical proper-
ties of these trees can be de-
duced from the positions of
branch tips. Denote by A;A3A43 . . . the ad-
dress of a branch tip and by d,, the number of
R’s minus the number of L's in A14245 . . . A,.
Placing the base of the trunk at the origin, this
branch tip is located at the point with coordinates

x = rsin(d,0) + r? sin(dz6) + 73 sin(ds6) + ---,

(1
y =1+ 7rcos(di0) + r2 cos(de6) + r? cos(dszf) + .

When the address is eventually periodic, closed expres-
sions for the coordinates can be found by summing the
appropriate geometric series. For example, the branch
tip with address (LR)*, a point of maximal height of the
tree for 0° < @ = 135°, has y coordinate

1 + 7 cos(f)
1—-r2

To generate pictures of the set of branch tips, the stan-
dard method already used in [FGN] is now [B] referred
to as “iterated function systems” (IFS). The two functions
required are

Br(x,y) =
(xr cos(6) — yr sin(0), xr sin(6) + yr cos(H)) + (0,1)

BL(x)y) =
(ar cos(—6) — yr sin(—6) + yr cos(—@)) + (0,1).

The tip set is the set of limit points of all finite composi-
tions of Bg and By, applied to (0,1).

To include the trunk (and all the branches), for 6 = 135°
add a third function

Tr(z,y) = (0,5),
where

1—72

#= 1+ 7 cos(6)

Here, s is the reciprocal of the height of the tree, hence the
vertical scaling factor of the trunk. Note that all the IFS
transformations must be contractions, so the trunk can be
generated with Tr(x,y) only so long as s < 1; that is, for
0 < 135°. However, Bp and By will generate the set of
branch tips for all 6. For 8 > 135°, replace Tr with two func-
tions

Tri(x,y) = (0,4/2),
Tro(2,y) = (0,4/2) + (0,1/2).

The wide availability of IFS software makes this area ac-
cessible to computer experiments.

Self-Avoidance
When J has no double point (i.e.,
no loop), it is said to be self-
avoiding. If so, the branch tips
are distinet points and, like the
points in a Cantor set, are non-
denumerable. They form a self-similar frac-
tal of dimension D = log(2)/1og(1/r). That the
scaling of the branch tips is identical to that of
the branches is illustrated by the IFS formulation.
In addition, it can be derived from the addresses of
appropriate branch tips, using the method we de-
scribe in the self-contacting case. For r < Yy, T is al-
ways self-avoiding, regardless of the wvalue of 6.
However, for /s < r < 1, the tree may or may not be self-

avoiding, depending on @.

Self-Contact

When the tip of some branch also belongs to some other
branch, the tree is said to self-contact. Self-contacts are
of two kinds: a tip may lie on a branch or two tips may
coincide; both kinds can be found on the same tree. Tip-
to-tip self-contact will be seen to involve a generalization
of the familiar fact that in binary representations of the
points of the interval [0, 1], the points corresponding to
0.01111 ... and 0.10000 . . . are identical. Here, too, the
dimension of the tip set is log(2)/1og(1/r).

Figure 1. The self-contacting 6 = 20° tree.
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Analysis of Tip-to-Tip Self-Contact

Note that the self-similarity and left-right symmetry of the
tree imply that self-avoidance is guaranteed if none of the
branches attached to the first left branch intersects the
linear extension, &£, of the trunk. “First” tip-to-tip self-con-
tact occurs where the rightmost branch tip of the left half
of the tree lies on £. How can this happen? Not surpris-
ingly, the answer depends on 6. For 0° < 8 = 90°, to find
the appropriate branch tip, note that the branch LR is a
vertical line segment of length 72 and is at a horizontal
distance 7 sin(#) from £. The rightmost branch tip of this
side of the tree is realized as the limit of a sequence of
branches, each attached to its predecessor in the se-
quence; this tip lies on & if the lengths of the horizontal
displacements of these branches sum to 0. Suppose N is
the smallest integer for which N@ = 90°. The desired se-
quence is described by the address LENT1(LR)>; that is,
after the initial LR, the branches turn right until the first
horizontal or negative slope branch. After that, they al-
ternate bearing left and right. Combining all like terms,
we see the branch tip lies on ¥ if its & coordinate is 0;
that is, if

rsin(—#) + r? sin(0) + -+ + rV sin((N — 2)0)
& 1""” sin((V — 1)6) + N+f2 sin(N§) = 0. (2)

We shall analyze several explicit cases in a moment.
Figures 1 through 8 show examples at interesting angles
throughout the range 0° < 6 < 180°.

Figure 9 shows, as a function of 6, the critical contrac-
tion ratio » that ensures self-contact. For 0° < 6 < 90°, this
graph is obtained by solving Eq. (2) for the appropriate N.
For 6 > 90°, different branch tips must be used.

For 90° < 6 = 135°, the relevant branch tip is L3(RL)™.
Figures 5 and 6 give examples; for tip-to-tip self-contact in
this @ range, r and 6 are related by

7 sin(—6) + sm( 20) + —— sm( 30) =

This equation can be solved explicitly for 7

i —cos(f) — V2 — 3 cos?(6) )
4 cos?(f) — 2 ’

In this range, the minimum » value is \/%, occurring at
@ = arccos(— 1/V6). Examining Figure 9 reveals that for
given r < \/ﬁ, tip-to-tip self-contact occurs at only two
values of ¢, whereas for given + > \/’o%, tip-to-tip self-con-
tact occurs at four values of 6.

For 135° < 6 = 180°, the relevant branch tip is L2(RL)*.
Figures 7 and 8 give examples; for tip-to-tip self-contact in
this @ range, r and 6 are related by

sm( ) + sm( 260) =

=
Again, this equation can be solved for r:

1
2 cos(0)’
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The corresponding equations for # < 90° do not admit
such clean solutions.

Self-Overlap

When two branches of 9 intersect beyond tips contacting
tips, the tree is said to self-overlap. This case is not of con-
cern in this article, but it deserves a digression, because it
supports interesting computer experiments. For » = 1/\/5,
the formal dimension is D = 2, suggestive of the plane-fill-
ing property of Peano curves. This property is observed for
two values of 6, for which J self-contacts tip to branch and
fills a portion of the plane. One of these values is 8 = 90°,
when it is well known that the free fills a rectangle, as is
easily checked by hand and noted in the caption of Plate
155 of [FGN]. However, this is not all. The definitions in
this article do not exclude the 6 satisfying 6 > 90°, for
which branches droop down the trunk instead of rising. It
is easily checked by hand that for 8 = 90° + 45° = 135°, the
tree T fills a right isosceles triangle. For other values of 6,
there is a massive self-overlap.

For /V2<r< 1, the formal expression for the di-
mension D = log (2)/1og(1/r) satisfies D > 2. This inequal-
ity expresses nicely the fact that the tree cannot avoid mas-
sive self-overlap and (irrespective of the choice of ) covers
a portion of the plane.

LR3(LR)°%,—RL3 (RL)™

RL2(RL™ (RL

(LR)*° LR2(LR)™

LR4LR)*° =R14 (RL™

Figure 2. The self-contacting 6 = 40° tree. Self-contact results from
the coincidence of LRYLR)* and RL*(RL)>. The canopy initiator is
the line from (LR)> to (RL)*; the generator consists of the six seg-
ments connecting the branch tips (LR)*, LR2(LR)*, LR3LR)~",
LRYLR)” = RLYRL)*, RL3RL)>, RL*RL)*, and (RL)*. The corre-
sponding binary fractions are (LR)*— 1/3, LR?LR)*— 5/12,
LR3(LR)® — 41/96, LR*(LR)* — 83/192, RL*(RL)* — 25/48, RL3(RL)* —
13/24, RL?(RL)” — 7/12, and (RL)” — 2/3.



LR® (LR)°°*|* RL® (RL)™
(LR) LR2(LR)™| RL2(RL)™ (RL™
L](RL)™ R3(LR)*

Figure 3. The self-contacting 0 = 80° tree. This rendering presents
only 13 branchings, so the self-contacting nature is not apparent.
Here, the canopy generator consists of four segments connecting
the branch tips (LR)*, LR3(LR)*, LR3(LR)* = RL*(RL)*=, RL2(RL)*, and
(RL)*. For comparison with the 8 = 90° tree, the branch tips L3(RL)~
and R3(LR)* are indicated.

Definition of the Canopy of a Self-Contacting
Fractal Tree

Following [FGN], p. 242, one defines the tree’s hull or outer
boundary, as the set of points that can be reached from
far away by following a curve that does not intersect the
tree. The huil is an intrinsically interesting concept and has
been investigated for many fractal sets. In a self-avoiding
tree, this notion is without interest, because the hull is iden-
tical to the whole tree with its tips. More interesting are
the self-contacting trees that are illustrated in Figures 1
through 8 of this article. (They are adapted from Plate 155
of [FGN].) These figures show that the boundary includes
two very different components whose structure depends
on the sign of 6 — 90°.

One component is made of straight intervals that are
reached by approaching the tree “from below.” In Figures
1 through 3, for which 6 < 90°, these intervals join in two
broken lines that start in the root, move up by fanning to
the right and to the left, and end in spirals. Each straight
portion in these broken lines is a full branch of the tree.
Moreover, these broken lines are of finite length, therefore
of dimension 1. The other part of the boundary is a fractal
curve ¢ made of points that can be reached by approach-
ing the tree “from above.” The curve € was considered in
[FGN], p. 1563, and called the canopy of the tree. Loosely
speaking, ‘¢ is made of branch tips that have somehow “co-
alesced”; in a moment, this idea will be made precise and
we shall then evaluate the fractal dimension, &¢, of the
canopy. Because € is a curve, we have & = 1, and since
%€ is a subset of 7, we have &¢ = D.

However, Figures 5 through 8, for which 8 > 90°, ex-
emplify a totally different situation. The straight intervals

(LR)*® LF{E(LR)‘”I= RL2 (RL)™ (RL)™
e
e
G e
Hen e
B

L3LR)™ = R*(RL)™

Figure 4, The self-contacting & = 90° tree. In the infinitely branched
limit, this tree fills the rectangle. The circle in the middle indicates
the branch tips LR3(LR)* = L*RL)* = RYLR)* = RL3(RL)>; the bot-
tom circle indicates L3(RL)* = R3(LR)*. As 0 crosses the topological
critical value ¢ = 90°, the topology induced by the contacts between
tips changes throughout. All the links present for @ < 90° are broken
and new links established.

are not full branches but portions of branches, and the
canopy can, at best, be defined as a dust of points: much
of what looks like a canopy is screened from infinity by
other portions of branches.

Extrapolation
The significance of the sign of & — 90° is confirmed if the
tree is suitably extrapolated. The idea is to imagine that
what is drawn in the figures is not a free-standing tree but
only a branch in an infinite tree. Alternatively, one can
“zoom in” a small portion of a tree drawn in the figures,
with the constraint that this portion touches the boundary.
When 6 <<90° the extrapolation yields a simplified
boundary: the portion made of branches vanishes and one
is left with a piece of fractal canopy. When 6 > 90°, to the

R? (LR)™®

Figure 5. The self-contacting # = 105° tree. Both addresses of the
indicated double points are L3(RL)” = R3(LR)>, LR3(LR)™ = L4(RL)",
RL¥RL)” = RYLR)*, (LRIL3(RL)* = (LR)R(LR)*, and (LR)L*(RL)* =
(LR)LR3(LR)>.

L2(RL)*®
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L} (RL)®%= R® (LAY
(LR)®° (RL
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RL® (RL)*®
= R*(LR)™®

LR(LR
= L*(RL)™°

By = b
Figure 6. The self-contacting # = 130° tree. Left to right: the top la-
bels indicate the branch tips (LR)=, LR2(LR)*, RL2(RL)*, and (RL)™;
the label on the trunk indicates the double point L3(RL)~ = R3(LR)*;
the label below and to the left indicates the double point LR3(LR)* =
L*(RL)*; the lowest labels indicate L2(RL)* and R?(LR)>.

R?(LR)*®

contrary, the extrapolated boundary continues to include
parts of the branches.

The Structure of the Canopy When ¢ < 90°

Each piece of % contains both single and double points.
For example, Figure 3 shows clearly that the tips (LR)*
and (RL)™ cannot be reached in any other way; they are
single points. Representing L by 0 and R by 1, we can
“parse” each sequence of 0 and 1 as a binary fraction. Then,
these two single point tips are represented by 0.010101
... = 1/3and 0.101010. .. = 2/3. By contrast, for 45° = § <
90°, the tips LR?*(LR)* and RL3*(RL)” coincide and form a
double point. These tips are represented by the binary frac-
tions 0.0111010101 ... = 1/2 — 1/24 and 0.1000101010... =
1/2 + 1/24; they define an excluded subinterval of [0, 1] cen-
tered on the midpoint. Every point of that excluded subin-
terval corresponds to a tip that falls within & and not on
its boundary; therefore, it does not belong to the canopy
“%. The excluded subintervals can be ordered by decreas-
ing size; therefore, they are denumerable. The same is true
of the canopy double points that correspond to those in-
tervals.

The Koch-like Structure of the Canopy and Its
Fractal Dimension When 6 < 90°

The question was posed in [FGN] and had seemed difficult,
but after sufficiently large numbers of actual trees had been
plotted and examined with sufficient attention, the answers
became self-evident. They are elementary but tedious, be-
cause they depend on the value of . Figure 9 shows that
depending on the value of r, self-contact occurs for either
two, three, or four threshold values of 6.

As a function of 6, the dimension of the canopy turns
out to have negative discontinuities for 8 = 135° and for all
angles of the form 8 = 90°/k, k > 1, and to be right-contin-
uous in the intervals between these critical angles. See
Figure 10, which also includes the dimension I} of the tip
set, and the dimension &4 of the shortest path.

Inspection of the top part of the canopy, the part be-
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RL2(RL)°Z R3(LR)™®

LR2(LR)°Z L3(RL)*°

L2(RL)°% R2(LR)™®
Figure 7. The self-contacting @ = 137° tree. The # = 135° tree (not
drawn) fills a triangle. As @ increases and crosses the topological
critical value # = 135°, the topology induced by the contacts between
tips changes throughout, just as when @ crosses the other topolog-
ical critical point, 6 = 90°. For this value 6 = 137°, the shortest path
nearly coincides with the Cesaro curve illustrated on Plate 65 of
[FGN] as a boundary between white and black.

tween (LR)” and (RL)*, shows that the canopy is a Koch
curve. The self-similarity of the canopy allows us to use
this top to compute the canopy dimension. Although the
numerical value of the initiator length, {, does not matter
(units can be chosen to make it 1), we do need an expres-
sion for it in terms of * and 6 to derive the scalings of the
generators. The left and right ends of the initiator are the
branch tips (LR)* and (RL)™. Thus, I is the difference of
the x coordinates of these tips. From Egs. (1), we see that

_ 2rsin(6)
1—12
As to the generator of €, it depends discontinuously on
0. Let us examine a few cases.

I=sin()(r+r®+ ) —sin(— O + 3 + =)

LRZ(LR)"= L® (RLS”

Figure 8. The self-contacting 6 = 145° tree. Left to right: the top la-
bels indicate the branch tips (LR)*, LR2(LR)* = L3(RL)*, and (RL)>;
the other (lower) label indicates L2(RL)” = R%(LR)~. The shortest path
is the classical triadic Koch curve.
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Figure 9. The relation between @ in degrees and the critical contraction ratio r that ensures self-contact. Note that for r less than \/3/8, self-

contact occurs at two 0 values. For larger r (except r = V/2), self-contact occurs at four 6 values.

The Range 45° < ¢ < 90°

Here, the mininial self-contact sequence occurs when the
branch tip LR3*(LR)” coincides with RL3(RL)*; that is, from
Eq. (2), we see 6 and r are related by

By inspection, the structure of the canopy is clearest to
the eye when 6 is close to 90°. Therefore, let us begin by
comparing a plane-filling tree (Fig. 4) and one that is close
to filling (Fig. 3). As observed, the top of Figure 4 is sim-
ply an interval of dimension 8¢ = 1.

3 4 = o n B s . o
# sin(—8) + ¥  sin(6) + i ~ sin(26) = 0. Just below .6 .90 , the car?opy opens up d.lscontmu
1= R ously, as seen in Figure 3, but its structure remains clearly
dimension
2.0 =
1.0 ==
0.5 ==
i ! | angle
45 90 135 180

Figure 10. The dimension D of the tip set (top, continuous curve); the dimension &¢ of the canopy (bottom, broken curve); and the dimen-
sion &g of the shortest path (small circles). Note é5 = &¢ for § < 90°, and 5 = D for 6 > 135°.
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recognizable. It is a Koch curve whose generator is made
up of four intervals. The endpoints of the left interval are
the branch tips (LR)* and LR?*(LR)*; those of the next right
interval are LR®(LR)™ and LR3(LR)”. From the coordinates
of these points, and then by bilateral symmetry of the tree,
and using Egs. (1), we see the generator intervals have
lengths

r=Wé 7y = Ir3, rs=1I3, and ry =2

The dimension &¢ of the canopy is known to be the
(unique) solution of the Moran generating equation, namely
(taking [ = 1) the equation

ZT‘?Z 1.

Here, the Moran equation takes the form
2738 4 2936 = |,

It is convenient, in this article, to write % = A, with A the
solution of the third-order equation

A2 A3 =1p,

By contrast, in the plane-filling Figure 4, one could have
said that A was the solution of the equation 2A% = 1, which
yields A% = 2% = 1/2, hence, &¢ = 1. (For § = 90°, minimal
self-contact requires r = l/\/i.) Therefore, & jumps dis-
continuously from the value 8; = 1 that it takes when D =
2, to a larger value it takes when D = 2 — €.

The Range 30° = § < 45°

As 6 continually decreases to 45°, the canopy reaches a
second discontinuity because not only do the branch tips
LR3(LR)* and RL}(RL)* coincide but also LRYLR)* and
RLA(RL)” coincide (and, of course, so do many other
branch tips between these). As 6 decreases below 45°,
LR*(LR)* and RLYLR)” coincide at a smaller r value than
do LR?*(LR)” and RL3(RL)*, so minimal self-contact occurs
when LRY(LR)” coincides with RL*(RL)*. See Figure 2.
Thus, from Egs. (2), we see 6 and r are related by

rt 7P
e sin(26) + -2

7 sin(—6) + 3 sin(6) + sin(36) = 0.
Passing 45° adds two intervals to the generator, each of
length given by the distance between the branch tips
LR3(LR)” and LRY(LR)™; that is, the generator is a broken

line of six intervals of lengths
ry = lrd, 1y = Ir4,
and 7 = Ir2

re = I3,
rs = Ird,

= ET'Z,

The dimension & is now the solution of the Moran gener-
ating equation

6
> 13 =2r28 4 238 4 Opd = |
j=1
and A = 7% is the solution of the fourth-order equation

A=,
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Again, &¢ jumps discontinuously from the value it takes for
6 = 45° to a larger value it takes for 6 = 45° — €.

The General Range 90°/N = ¢ < 90°/(N — 1)

Figure 1 shows a typical example in this range. The gen-
eralization is obvious. In this range, minimal self-contact
occurs when r and @ are related by Eq. (2) and A is the so-
lution of the equation

AR+ W=

Each passage through a value of the form 6 = 90°/N is
accompanied by a jump up in the value of &;.

The Limit N— « and D — 1
The Moran generating equation becomes

28
2(7.26+ 1,-364, ) = lzi 7‘5 =

L

Its real positive solution is % = 1/2. At the same time as
D — 1, one has r— 1/2; hence, the preceding equation
yields &¢ — 1, which is where we started for § = 90°. This
result was to be expected. We had known all along that the
passage to the limit N — « makes the canopy become
smaller and smaller. Moreover, we noted already that be-
cause € is a curve and a subset of 7, one has 1 = &; = D.
When 6 — 0, D— 1 and the canopy necessarily becomes
smoother and smoother.

As D decreases from 2 to 1, 6 decreases from 90° to 0°,
and we see that, as announced, &; has negative disconti-
nuities for 6 of the form 6 = 90°/N and is right-continuous
and increasing in the intervals between these discontinu-
ities. See Figure 10. Knowing r as a function of # in each
of the ranges 90°/N = 8 < 90°/(N — 1), we obtain &; by
solving the corresponding Moran equation.

The Value 4 = 90°

Here minimal self-contact requires r = 1/\V/2. See Figure
4. To see the gap between the upper left and right sides
of the tree close, note that the branch tip LE2(LR)* co-
incides with RL:(RL)®, LR3(LR)* coincides with
RLA(RL)”, and every branch tip between LRZ(LR)” and
LR3(LR)* with x coordinate 0 coincides with the corre-
sponding tip on the right side of the tree. A similar argu-
ment shows the gap between the lower left and right sides
of the tree closes. Here, L3(RL)” coincides with R3(LR)*,
and L*(RL)” coincides with R*(LR)*. In addition, from the
IFS formulation, it is easy to see that the set of branch
tips is a filled-in rectangle. Consequently, the canopy con-
sists of the edges of this rectangle and thus has dimen-
sion 8¢ = 1.

The Cantor-like Structure of the Canopy and

Its Fractal Dimension when 0 > 90°

Unlike the situation when 6 < 90°, for minimal self-contact
now there are only two relevant branch tips, instead of one
for each interval (90°/N, 90°/(N — 1)). For 90° < 0 < 135°,
minimal self-contact is obtained by requiring that the



branch tips L3(RL)> and R*(LR)” coincide; for 135° < 8 <
180°, we require that L?(RL)* and R?(LR)™ coincide.

Also, unlike the situation when 6 < 90°, portions of
branches screen from infinity some of the branch tips that
might visually appear to belong to the canopy. Figures 5
through 8 illustrate this situation. The effect of this screen-
ing is to totally disconnect the canopy. Instead of a variant
on the Koch curve, it is now a variant on the Cantor set.

The Range 90° < § < 135°

As seen in Figures 5 and 6, the canopy generator consists
of four segments. The two on the left have corners (LR)”
and LR?(LR)*, and LR*(LR” and LR*(LR)* = L*(RL)". [The
segment with corners LR3(LR)* and L3(RL)* = R3(LR)* is
screened from infinity by branch segments.] The first of
these generator segments has length 7, = (7% the second
has length r; = Ir3. Again, the tree is symmetric; hence, the
Moran generator equation becomes

2r2d 4 2938 = ],

So, 7%= 0.565198.. . ., thereal root of A2 + A3 = 1/2. Figures
5 and 6 show the 105° and 130° trees, respectively.

The Value 6 = 135°

As in the 6 = 90° case, here self-contact requires = V2.
To see the gap between the lower left and right sides of
the tree close, note that the branch tip L>(RL)* coincides
with R3*(LR)*, L%(RL)* coincides with R2(LR)*, and every
branch tip between L3(RL)” and L2(RL)* with 2 coordinate
0 coincides with the corresponding tip on the right side of
the tree. In addition, from the IFS formulation, it is easy to
see that the set of branch tips is a filled-in triangle. As in
the 6 = 90° case, 6 = 1.

The Range 6 > 135°

As fincreases from 135° to 180°, the branch tips form a
family of Koch curves, with the generator consisting of
four segments, the two on the left with corners (LR)*
and LR2(LR)* = L3(RL)*, and L3(RL)* and L3(RL)*. All
four segments have length ry = r2l, where r2 varies from
1/2 when 6= 135° to 1/4 when 6 = 180°. Hence, the
Moran equation for the dimension of the branch tips is
simply

4928 =1 or rd=1/2

Figures 7 and 8 show trees in this range. Here, branch
segments completely screen the Koch curve generator
with corners LR2(LR)* and L2(RL)* = R?>(LR)*, and the
generator with corners RZ(LR)* and R3(LR)” =
RL2(RL)*. The remaining generators for the canopy have
corners (LR)* and LR2(LR)*, and RL*(RL)” and (RL)>.
These segments have length 7y = 721, so the Moran equa-
tion is
225=1 or r®=1/V2

The Critical Value 6 = 180°
Here, the tree collapses to its trunk.

Canopy Dimension as a Function of ¢

Figure 10, a summary of the calculations presented here,
is a graph of the canopy dimension 8¢ and the tip set di-
mension D, as a function of the branching angle 6. The di-
mension dy of the shortest path, discussed in the next sec-
tion, is also shown.

The discontinuities of & at the critical points 6 = 90°
and 6 = 135° deserve special mention. Comparing Figures
3 and 5 shows why &¢ approaches the same value as 6 —
90°~ and as @ — 90°" (not the value of &¢ at 8 = 90°). For
both 6 — 90°~ and # — 90°7, the top of the canopy is gen-
erated by two copies of the portions between the branch
tips (LR)* and LR*(LR)*, and between LR?*(LR)” and
LR3(LR)*. The distances between these pairs of tips ap-
proach the same limits as 6 — 90°.

Figures 6 and 7 illustrate the discontinuity at 8 = 135°.
For 6 < 135°, exemplified by Figure 6, the generator of the
top of the canopy consists of four pieces. For 6 > 135° ex-
emplified by Figure 7, segments of branches shield two of
these four pieces. Thus, the discontinuity at # = 135° repre-
sents a change in the number of generators, as do the dis-
continuities at # = 90°/N, N > 1. Only the 6 = 90° disconti-
nuity does not involve a change in the number of generators.

Shortest-Path Dimension as a Function of ¢
As mentioned earlier, for 8 = 90°, the shortest path along
the branch tips from (LR)™ to (RL)” coincides with the por-
tion of the canopy between these points. For 6 > 90°, the
canopy disconnects into a Cantor set and, thus, cannot be
the shortest path. For 6> 135° the tip set becomes a
Koch-Cesaro curve and is the shortest path from (LR)™ to
(RL)*. [Note there is a shorter path in the tree, following
those branch segments that screen portions of the tip set
and that lie above the line through (LR)™ and (RL)*. See
Figure 8.] At 8 = 135°, the shortest path is a line segment.
The range 90° < 6 < 135° is more interesting. The short-
est path must pass through the double points

L3(RL)* = R3(LR)™, LARL)* = LR}(LR)*

[and the corresponding point R4LR)* = RL?*(RL)* on the
right half; for simplicity, these corresponding points on the
right half will no longer be mentioned],

(LR)L3(RL)* = (LR)R}(LR)*,
(LR)LA(RLY* = (LR)LR’*(LR)*, . . .,
(LRYCLARLY" = (LRY"R3(LR)™,
(LRMLA(RL)” = (LR*LR3(LR)", . . . .

Note that as n — ¢, these points approach (LR)”, as ex-
pected.

The line segments connecting these points in order, to-
gether with those connecting the corresponding points on
the right side, form the generator of the shortest path.
Formulas (1) and (2) could be used to find the lengths of
these segments, and so determine their scalings, but a
much simpler approach is to use the IFS construction of
the tip set.

First, By, takes the tip set to that part determined by
(LR)*, LR*(LR)*, LR3(LR)*, L*(RL)*, and L*(RL)*; Bp
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takes the tip set to the corresponding part on the right.
Letting A; denote the segment from L*(RL)” to L3(RL)”
and Ay the segment from R2(LR)* to R3(LR)* = L*(RL)%,
we see that

the segment from L3(RL)” to L*(RL)” is Br(A)

the segment from LA(RL)* to (LR)L*(RL)” is Br.Br(Az)

the segment from (LR)L}(RL)* to (LR)LYRL)* is
BrBpB(Ay), . ..

That is, these generator segments have lengths » (length of
Ay), 72 (length of Ay), v3 (length of Ay), . . .. The initiator
has length 27 sin()/(1 — %), and from their endpoints, we
compute directly that A; and A have length 2¢2 sin()/(1 —
r2). Taking units so the initiator length is 1, the generator
for the shortest path consists of two segments of length r3,
two of length r%, two of length 75, and so on. The Moran
equation is

2(?.3)4 + 2(7.4).1 + 2(7.5):1! + e =1
or
el il
FEr

Thus, % = 0.589755, so d = log (0.589755)/10g(r), where r
is expressed in terms of 6 by Eq. (3).

The Mix Map

As mentioned earlier, in the range 135° < 6 < 180°, the tip
set becomes a Koch-Cesaro curve. In this range, the dou-
ble points have addresses

LARL)* = R¥LR)”
and
SLA(RL)” = SRA(LR)*,

where S is any finite string of L and R. Figure 8 makes this
clear: note the locations of L2(RL)” = R%(LR)*, L3(RL)” =
LR%(LR)*, and RL*(RL)” = R3(LR)”, for example.

Parsing these strings in the usual way, we have

L2(RL)* = 00(10)* and R%(LR)* = 11(01)*

and so on. Noting the addresses of these double points, we
define the mix map as the function on binary sequences
taking the addresses of double points to sequences corre-
sponding to the same real number; that is, the mix map is
defined by

m(b1bobgby . . ) = bibobaby . . .,

where b; = 1 — b;.
To see the claimed identifications, first note that
L2(RL)” coincides with R*(LR)", and
m(00(107)) = 01(11)* = 1/4 + 1/8 + 1/16 + -,
m(11(01)*) = 10(00)* = 1/2,
and the binary sequences corresponding to SL2(RL)™ and
SR2(LR)™ are sent by m to

m(S)01(11)* and m(S)10(00)*
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if S contains an even number of elements, and
m(S)10(00)* and wm(S)01(11)~

if § contains an odd number of elements. Here, m(S) de-
notes the obvious restriction of m to a finite sequence.
Regardless of the number of elements in their common ini-
tial string, sequences corresponding to double points are
sent by m to equal real numbers.

As a function on binary sequences, the mix map is
clearly self-inverse. Viewing it as a map on the unit unter-
val requires more care: equivalent binary expansions do
not get sent to the same numbers. For example,
m(0(11)*) = 0(01)* — 1/6, whereas m(1(00)*) = 1(10)* =
— 5/6. Consequently, to view m as a map [0, 1] — [0, 1],
we must adopt some convention—no terminal strings of
all 0, for example—about sequences representing points in
the domain. Figure 11 is a graph of the mix map.

To emphasize the sizes of the jumps, in Figure 11 we
have drawn a line segment between points of the form
(xym(x)) and (y,m(y)), where x = s1(00)* and y = s0(11)",
s any finite string of 0 and 1; that is, the binary strings x
and y correspond to the same real number.

Even without adding the line segments, the graph has
dimension 1. This can be seen by an argument analogous
to that showing that the product of two Cantor sets, each
of dimension 1/2, has dimension 1.

The longest line segment connects m(0(11)*) =
0(01)* — 1/6 and m(1(00)*) — 5/6, so has length 2/3. The
second longest line segments connect m(11(00)*) — 5/12
to  m(01(00)*) — 1/12, and m(11(00)*)— 7/12 to
m(10(11)*) — 11/12; both have length 1/3. Continuing in
this fashion, we see that the first variation of m is

2 1 1 " . ——1
'§+2'§+4‘E+"'+2 3.2??,*1-‘_ ’
Wi
11/127¢ Lﬂé
506 | ‘LJJLL;
J
7/12 -
L U
III\"L\J'
.
1/6 + L:j"f
112 | .ﬂl
o

1/4 1/2 3/4
Figure 11. The graph of the mix map, with jumps connected with
line segments
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which diverges. The gth variation is

2\ LpL o AW s ol _ L 1%5 v
(3) +2 (3) +4 (6) T— (32) g

Because 2% - (3 - 2¢71)7¢ = (2/39) - (2 - 279)"" 1 the gth
variation converges for g > 1.

Finally, by using different bases or modifying differ-
ent length substrings, we can produce many other func-
tions with different patterns of changes. For example,
m(b1babs . . ) = bibabsbabsbg . . . is another self-inverse
function, whereas mso(b1bobs . . .) = babsbbsbgby . . . sat-
isfies mj = identity. This general theme can lead in other
directions. For instance, by flipping values at increas-
ingly widely separated positions, we produce functions
that are extraordinarily mixing in the large, but less mix-
ing in the small. However, this has (apparently) digressed
from our study of trees, and so we leave it for another
time.

Animating the Changes

A clear understanding of the morphology change of self-
contacting trees as f increases from 0° to 180° is easily
communicated through animation. Several efforts in this
direction can be found at http:/www.union.edw/PUB-
LIC/MTHDEPT/research/fractaltrees/
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Further Reading
Besides [FGN], Chap. 16, trees are discussed in [PJS], [L],
and many other sources. The construction of trees as L-
systems is described in [PL].

Iterated function systems are used in [FGN], Chap. 20,
and developed in [B] (which introduced the currently ac-
cepted term); see also [H].
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